
NASA Technical Memorandum 100305

Effects Of Fire On Composition,
Biomass, And Nutrients In Oak
Scrub Vegetation On John R
Kennedy Space Center, Florida

Paul A. Schmalzer, Ph.D.

C. Ross Hinkle, Ph.D.

The Bionetics Corporation, Kennedy Space Center, Florida

July 1987

National Aeronautics and
Space Administration

John F. Kennedy Space Center

N/LSA



TABLE OF CONTENTS

SECTION PAGE

Table of Contents ........................................... i

Abstract .................................................... iii

List of Figures ............................................. v

List of Tables .............................................. iy

Acknowledgements ............................................ xiii

Introduction ................................................ 1

Study Area .................................................. 5

Study Objectives ............................................ i0

Methods ..................................................... ll

Results ..................................................... 14

Discussion .................................................. 109

Conclusions and Management Implications ..................... 121

Literature Cited ............................................ 124

i



ABSTRACT

Oak scrub is a shrub vegetation type dominated by Quercus

myrtifolia, Q. chapmanii, Q. vir_iniana var. 5eminata, Serenoa

repens, and ericaceous shrubs occurring on well-dralned sites on
John F. Kennedy Space Center, Merritt Island, Florida.

Four stands of scrub vegetation, 2, 4, 8, and 25 years since

fire, were sampled in 1983 with permanent 15 m line transects and

percent cover by species was determined. Biomass was harvested
on I m 2 plots associated with the line transects. Plant tissue

samples were analyzed for total KJeldahl nitrogen (TKN), total
phosphorus (P), calcium (Ca), magnesium (Mg), sodium (Na),

potassium (K), and aluminum (AI). Soil samples were taken from

the 0 to 15 cm and 15 to 30 cm layers at each transect and

analyzed for pH, conductivity, organic matter, cation exchange

capacity (CEC), exchangeable Ca, Mg, K, Na, AI, nitrate-nitrogen

(NOR-N) , ammonia-nitrogen (NHB-N) , available copper (Cu), iron
(Fe), manganese (Mn), zinc (Zn), and P. Transects were

resurveyed in 1985 for vegetation parameters.

Ordination analysis indicated that species were distributed

along a gradient related to water table depth. Between the two
sample periods some shifts in dominance in transects of the

younger stands occurred with saw palmetto increasing in

importance in some and oaks in others primarily due to height

growth. Species richness changed little with time since fire.

Mean total cover in the greater than 0.5 m stratum, mean height,

and mean maximum height increased with time since fire. Mean

total cover in the less than 0.5 m stratum decreased after year
2. Live biomass increased with time since fire. Litter biomass

increased for at least 8 years after fire. Standing dead biomass

formed a major component of total biomass but did not change

significantly in total amount with time. Saw palmetto rhizomes

were a significant and persistent component of scrub biomass.

Tissue concentrations in llve biomass of TKN, total P, Ca,
Mg, Na, K, and A1 showed no trends with time since fire. Tissue

concentrations were similar to those reported for other

ericaceous shrubs and chaparral species. Litter concentrations

of Ca, K, and total P were elevated in the 2 year old stand
probably as a result of ash deposition.

Nutrient pools in biomass were calculated from biomass data

and tissue nutrient concentrations. Litter, standing dead

material, and saw palmetto rhizomes were major pools for many

nutrients. Live stem biomass became important in the oldest
stand. Standing crops were similar to those in other shrublands

such as chaparral.
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Soil chemical properties were closely related to water table

depth. Wetter soils had higher organic matter content, greater

cation exchange capacity, and higher concentrations of many

nutrients. Effects of fire on scrub soils include increased pH
and decreased organic matter, TKN, and available Zn.

Soil nutrient pools were calculated from nutrient

concentrations and bulk density. Biomass pools of P, Ca, and K

were greater than those of the soil in all stands. Biomass pools

of TKN, Na, and Mg exceeded those in the soil except in wetter

sites or where saw palmetto rhizomes were few. Aluminum pools
were consistently greater in the soil than in biomass.

Deposition rates of nitrogen, Ca, P, and K in precipitation

were low relative to biomass pools while the amounts of sodium

and magnesium in precipitation were greater relative to biomass.

Biological nitrogen fixation and mechanisms which retain and

recycle nutrients in the system may be important to the

persistence of oak scrub.

Long-term fire effects of a changed fire regime (e.g., the
3 yr cycle now being applied) could be greater than what is seen

after recovery from a single fire event and could include shifts

in dominance to the species best adapted to frequent fire and

changes in nutrient cycling. The effects of frequent fire in oak

scrub of most concern are the structural changes, particularly
reduction in height. Burning on a 3 year cycle maintains shrub

height in oak scrub less than i m but the endemic Florida scrub

Jay (dependent on oak scrub and related communities) prefers oak

scrub greater than i m as habitat.
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INTRODUCTION

Scrub Vegetation Literature Review

Scrub has long been recognized as a distinctive plant

community in Florida. (Harper 1914, 1921, 1927, Mulvania 1931,

Webber 1935, Kurz 1942). However, considerable confusion exists

about what specific communities should be designated scrub.
Confusion also exists as to the fire ecology, relationship to

environmental variables, and successional patterns of scrub.

Sand pine scrub is endemic to Florida (Austin 1976, Christensen

1979); related oak scrub communities occur in adjacent states

(Laessle 1967). Laessle (1942) used the designation scrub only

for sand pine scrub which had a canopy of sand pine (Pinus
clausa) and an understory of evergreen shrubs, particularly

myrtle oak (Quercus myrtifolia), sand live oak (Q. virginiana

var. geminata), Chapman oak (Q. chapmanii), and saw palmetto

(Serenoa repens) and referred to similar communities without the

sand pine canopy as "scrubby flatwoods." This classification is
also used by some recent workers (Abrahamson 1984a,b, Abrahamson

et al. 1984, Givens et al. 1984). Kurz (1942) used the term

scrub more broadly for various communities of evergreen shrubs on

coastal and inland dunes. Webber (1935) emphasized the

importance of the shrub layer rather than the pine overstory in

defining scrub.

The Florida Natural Areas Inventory (FNAI) uses a broad

classification defining eight scrub types: sand pine scrub, sand

plne/turkey oak scrub, slash pine scrub, oak scrub, rosemary
scrub, saw palmetto scrub, and tropical scrub (Duever 1983a, FNAI

unpublished).

Sand pine scrub has received more study than other types.

It occurs on xeric sand ridges which are low in nutrients

(Mulvania 1931, Webber 1935). Laessle (1958b, 1967) established

the relationship between inland scrubs and former shore lines;

old dunes, beaches, and bars formed from washed and sorted sands

were occupied by sand pine scrub. Laessle (1958b) suggested that
nutrient deficiencies of the scrub soll were responsible for the

occurrence and distinctness of this community; he later analyzed

soils from sand pine scrub and adjacent sandhill (longleaf pine/

turkey oak) vegetation and found no consistent differences in the
soils (Laessle 1967). Kalisz and Stone (1984) found no

consistent differences in soll profile morphology, particle size

distribution, or extractable nutrients between longleaf pine

islands and sand pine scrub in Ocala National Forest.

Fire is of major importance to scrub vegetation. Fires are

infrequent in sand pine scrub; a return cycle of 20 to 40 or more

years has been suggested (Austin 1976). Sand pine reproduces

from seed following fire (Webber 1935) and frequent fire would
eliminate it. Richardson (1977) and Peroni and Abrahamson (1986)

have reported the transformation of sand pine scrub to "scrubby

1



flatwoods" by frequent fire. However, sand pine is a short-lived
species (ca. 75 years) and long exclusion of fire can also lead
to its elimination (Laessle 1967).

Rosemary (Ceratiola ericoides) reproduces only from seed and

requires a fire cycle of i0 to 40 years (Johnson 1982) indicating

limits to the natural fire cycle of scrub in which rosemary is
important. When fire does occur in sand pine scrub it is intense

(Wetter 1935). Several factors contribute to the low frequency

of fire in scrub including the evergreen nature of the shrubs

(which spreads out in time the accumulation of litter), the lack

of grasses and herbs in the community, and lack of extensive

litter buildup on the ground under the stand (Wetter 1935). Over

time, sufficient fuel builds up to carry fire, at least under dry
conditions. After fire, the scrub oaks and other shrubs resprout

(Wetter 1935). These low frequency-high intensity fires contrast

sharply with the frequent, low intensity fires typical of

longleaf pine/turkey oak (sandhill or high pineland) vegetation

(Webber 1935, Laessle 1967) and may be responsible for

maintaining sand pine scrub and sandhill as distinct communities
(Kalisz and Stone 1984, Myers 1985).

Natural fire frequency for oak scrub is not known with

certainty. It is generally assumed that oak scrub burned more

often than the 20 to 70 year cycle estimated for sand pine scrub

but less often than the nearly annual cycle of longleaf pine/
wiregrass sandhill community (Abrahamson et al. 1984). Davison

and Bratton (1986) found a drought cycle of 23 + 5 years for

Canaveral National Seashore and suggested that _ak scrub is only

likely to experience major fires with summer drought conditions

since only at this time would an ignition source (lightning)

coincide with vegetation in a fire-prone condition.

Less information is available on the response of scrub types

other than sand pine scrub to fire. Abrahamson (1984a,b) studied

the response of several communities to fire on Lake Wales Ridge
(Archbold Biological Station) including "scrubby flatwoods." A

prescribed winter burn using headfires burned 30 to 62% of the

vegetation along transects in "scrubby flatwoods" (Abrahamson
1984a). Species present in "scrubby flatwoods" before fire

sprouted in response to the fire. Cover (measured as single

stratum) returned to pre-burn values within 2 years and species

composition was unchanged. However, height growth of the scrub

oaks was slow; myrtle oak had a mean height of 50 cm at 5 years

post-burn and sand live oak had a mean height of 30 cm at 5 years

(Abrahamson 1984a). Saw palmetto returned to its pre-burn cover

within 1 year after fire; it also exhibited faster height
increase reaching 70 cm within 2 years after fire (Abrahamson
1984b).

Succession in the absence of fire has been the subject of

much speculation. Kurz (1942) suggested that scrub species could

invade adjacent sandhill vegetation. He also placed coastal



strand, oak scrub, and sand pine scrub in the middle of the dune
successional sequence between sea oats and hammocks. He noted,
however, that most scrubs were stable and considered them an
edaphic climax on sterile xeric sands. Laessle (1942, 1958b)
thought that scrub would undergo succession through llve oak
hammock to a mesic hammock and that there was no successional
relationship between scrub and sandhill. He later noted sand
pine invasion of sandhills which had been protected from fire
(Laessle 1967). He also observed that many scrubs showed no
invasion by hammock species while some, particularly in coastal
areas on less leached soils, did show such invasion (Laessle
1967).

Veno (1976) studied permanent quadrats established by
Laessle (1958a) in con_nunities of the Welaka Reserve which had
been protected from fire since 1939. Scrub showed no change in
species composition; density and basal area of the scrub species
increased greatly and woody litter increased over the 20 year
period of the study. Givens et al. (1984) also reported little
change in species composition of sand pine scrub or "scrubby
flatwoods" in i0 years in a section of Archbold Biological
Station which had been protected from fire since 1927.
Structural changes occurred including height and crown diameter
growth; density of most shrubs decreased due to thinning
mortality. Peroni and Abrahamson (1986) found that "scrubby
flatwoods," sand pine scrub, and rosemary scrub on the southern
Lake Wales Ridge remained relatively stable in the absence of
fire. Myers (1985) showed that scrub species including sand
pine, sand live oak, myrtle oak, Lyonia ferruglnea (rusty
lyonia), and scrub hickory (Carya floridana) increased greatly in

density and basal area in a sandhill site at Archbold Biological
Station protected from fire since 1929.

Kalisz and Stone (1984) suggested (based on soil opal data)

that the boundary between sand pine scrub and sandhill may shift

over time with differing fire frequencies and intensities. Myers

(1985) suggested that fire frequency and intensity are the major
determinants in the development and maintenance of sandhill, sand

pine scrub, and xeric hardwood vegetation.

Paleoecological studies (Watts 1971, 1975, 1980) have shown
that scrub vegetation has long been present in Florida. At Lake

Annie at the south end of Lake Wales Ridge (Watts 1975), the

pollen record suggests that rosemary scrub dominated from 37000

BP to 13000 BP, indicating xeric conditions. Oak scrub (or

woodland) possibly with prairie openings dominated between 13000

BP and 4700 BP at which time the presettlement vegetation

patterns were established. Oak scrub or woodland is also
recorded in north and central Florida between about 8000 BP and

5000 BP (Watts 1971). These studies suggest much drier

conditions at least in terms of soll moisture during the

Wisconsin glaciation due to lower sea levels, dropping the
regional water table, or to reduced precipitation (Watts 1980).
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Effects of Fire on Soils

No detailed studies of the effects of fire on scrub soils

exist. The effects of fire on soils varies with the type of

soil, climate, vegetation, fuel load, physical attributes of the

site (e.g., slope), temperature and duration of the fire, and
other factors (Wells et al. 1979, Raison 1979, Rundel 1981 ).
Effects occur from the direct action of heat on plants and soil

and indirectly from the removal of vegetation and litter creating
a new microclimate and from the redistribution and changed

availability of nutrients. Changes in soil properties may be

immediate or may occur subsequently through vegetation changes
and the activities of soil organisms. Changes may be short term

in response to a single fire event or long term in relation to a

particular fire regime (Raison 1979).

Given the variability in vegetation, soils, and fire

regimes, effects of fire on soils are highly variable (Wells et

al. 1979). Raison (1979) suggested that fire is likely to have

the most impacts on systems whose long term stability depends on
efficient nutrient accumulation, retention, and recycling, and

that these situations are often characterized by low soil

nutrient reserves, a large portion of the nutrient capital in

biomass, and rates of decomposition which limit productivity of
the whole plant community. Boerner (1982) distinguished between

oligotrophic ecosystems where nutrients are mainly aboveground

and soil reserves are low and eutrophic ecosystems which occur on
nutrient rich soils. Nutrient losses should be more significant

for oligotrophic systems since the losses would be greater
relative to the soil reserves.

Nutrient losses with fire occur by three mechanisms: direct

volatilization of organic matter, wind and water erosion of the

ash deposited by fire, and leaching to ground water of nutrients
made available by fire (Raison 1979, Wells et al. 1979).

Volatilization is most significant for nitrogen (Knight 1966,

Raison 1979) and to a lesser extent for sulfur. Losses (if any)

of other nutrients occur primarily through wind and water erosion

and leaching.

Even within the coastal plain of the southeastern United

States, the magnitude and significance of fire effects on soils

varies. On the Santee Experimental Forest in South Carolina,

prescribed fires produced atmospheric losses of up to 40 kg/ha

nitrogen and 8 kg/ha sulfur but no changes in ground water or

stream flow nutrients and only small effects on soil nutrients

(Richter 1980, Richter et al. 1982). This site had clay soils

with high cation exchange capacity (Richter 1980) and major

nutrient pools in the mineral soil (Gilliam 1983). On sandy,

infertile soils with low cation exchange capacity at the Savannah

River plant, Lewis (1974) found losses of cations (Ca, Mg, Na, K)

from the litter and increases of some (Ca, Mg, Na) in the ground

4



water. In the Pine Barens of New Jersey, Boerner and Forman

(1982) found that both hydrologic and mineral (Ca, Mg, K) outputs

were greater in wildfires than in prescribed fires that were,
in turn, greater than those from unburned sites.

McKee (1982) compared four coastal plain pine sites subject

to repeated prescribed burning. He found that the mass and

nutrient content (N, P, K, Ca, Mg) of the forest floor was

reduced on all burned sites. Available P and pH of the surface

soil increased on all sites. Exchangeable Ca and Mg generally

increased with burning in the surface soil while exchangeable K

and Na were little changed. For the whole system (forest floor

and soil), nitrogen increased slightly at two sites, decreased at

one, and at the fourth site increased with annual winter burns,
remained unchanged with periodic winter burns, and decreased with
periodic or annual summer burns.

In prescribed fires on Miami Rock Ridge pineland, Snyder
(1984) found nitrogen losses of 57 to 95 kg/ha but that other

nutrients were transferred from live vegetation and litter to

ash, standing dead vegetation, and the remaining litter.

Resprouting vegetation was important in taking up available
nutrients.

STUDY AREA

Location

John F. Kennedy Space Center (KSC) is located on the

northern part of Merritt Island on the east coast of central

Florida and consists of approximately 57,000 ha of land and

lagoonal waters (Figure 1). The National Aeronautics and Space

Administration (NASA) acquired the northern part of Merritt

Island in 1962 to support the space program and provide a safety

and security buffer area (NASA 1979). Management of part of the
lands not actively used in the space program was transferred to
the U.S. Fish and Wildlife Service (FWS) in 1963 with the

establishment of Merritt Island National Wildlife Refuge (MINWR);

in 1972 this management authority was expanded to include all

areas except those with NASA facilities or directly used in the

space program. In 1975 management of part of the coastal lands
was transferred to the National Park Service (NPS) with the

establishment of Canaveral National Seashore (CNS) (Hamilton et
al. 1985).

Geology and Soils

Merritt Island together with the adjacent Cape Canaveral

form a barrier island complex. Topographic relief is slight;

elevation ranges from sea level to about 3 m (i0 ft) in the

inland areas of Merritt Island and to slightly over 6 m (20 ft)

on Cape Canaveral and the recent dunes. The topography is marked
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by a sequence of ridges and swales reflecting relict beach

ridges. Brooks (1981b) mapped the area as the Cape Canaveral

section of the Central Atlantic Coast Strip. Healy (1975) mapped

Merrltt Island and Cape Canaveral as belonging to the Silver

Bluff Terrace while the Atlantic Coastal Ridge on the adjacent
mainland belongs to the Pamllco Terrace.

Surficial deposits are of Pleistocene and Recent ages

consisting primarily of sand and sandy coquina. These deposits
are sometimes referred to as the Anastasia formation (Brooks

1981a). These overlay upper Miocene or Pllocene deposits of

unconsolidated beds of fine sand, shells, clay, and calcareous

clay. Under these are the Hawthorn formation of Miocene age

composed of calcareous clay, sandy phosphatic limestone,
phosphorlte, and radiolarian clay. Below these are a series of

limestones of Eocene age which also constitute the Florida
aquifer (Brown et al. 1962).

The Cape Canaveral-Merritt Island barrier island complex is
unique along the Florida coast; it is not associated with rivers

or former deltas unlike capes on the coast of the Carolinas (Hoyt
and Henry 1970). White (1958, 1970) described this as a

prograding barrier island complex. He considered Cape Canaveral

to be the result of southward (longshore) growth of an original

cape at the site of the present False Cape. The eastern edge of

Merritt Island at its contact with Mosquito Lagoon and the Banana

River forms a relict cape coaxial with False Cape. Multiple dune
ridges parallel to the present shore inland on Merrltt Island

apparently represent successive stages in this growth. White

(1958, 1970) thought that this succession of cape formations was
probably structurally controlled by some bedrock feature which

influenced the southward movement of sediments along the coast.
Brown et al. (1962) showed that the depth to the Eocene limestone

formation below the land surface forms a ridge-like structure

roughly conforming to the shape of Cape Canaveral, which may be
the structure responsible for the cape formation. Chakl (1974)

distinguished eleven distinct beach ridge sets on Cape Canaveral
and suggested that periods of deposition and erosion have
alternated.

Successively older landscapes occur westward on Merritt

Island. Erosion has reduced the western side of Merritt Island

to a nearly level plain (Brown et al. 1962). Brooks (1981a)

mapped Cape Canaveral as of Holocene age, less than 4500 BP, but

Merritt Island as Pleistocene. Dating of fossil beach rock,

shells, or coquina (Osmond et al. 1970) gave recent ages on the

current barrier beach, ca. 30,000 BP on Merritt Island, and ca.
i00,000 BP on the adjacent mainland.

Soil development reflects the differing ages of the
landscape as well as drainage and parent material influences.

Numerous soil types occur (Huckle et al. 1974). Upland soils

fall into several groups. On the current barrier beach and Cape



Canaveral, Canaveral sand (Aquic Udipsamment) and Palm Beach sand

(Typic Udlpsamment) are the major soils. Both are entisols
formed in marine sand and shell deposits, with shell fragments

still present in the profile and an alkaline to neutral reaction
(Huckle et al. 1974). On the ridges on Merritt Island, the main

soils are Pomello sand (Arenic Haplahumod) and Paolo sand (Spodic

Quartzipsamment). Paolo sand, an entisol, is the better drained
of these two series; Pomello sand is moderately well drained and

has a spodic horizon. Both soils are acid and contain no shell

fragments. On less well drained sites, Immokalee sand (Arenic

Haplaquod), Myakka sand (Aerlc Haplaquod), and associated series

are the major soils. Both are spodosols with acid reaction;
Immokalee is slightly better drained than Myakka.

Climate

Merritt Island has a warm, humid climate. Annual

precipitation is about 125 cm and ranges from 4.01 cm in December
to 22.48 cm in September. Mean daily maximum temperatures are

21°C for January and 31°C for July; mean daily minimum

temperature are ll°C for January and 23°C for July. Freezing
temperatures may occur in winter but persist for less than a full

day (NASA 1979). Thunderstorms are common in the summer months;

the average number of days per month with thunderstorms are:

May, 8; June, 13; July, 16; August, 14; and September, l0

(Eastern Space and Missle Center 1982). Lightning strikes are

common, averaging 3.9 + 2.4 per square kilometer during June,

July, and August; a total of approximately 1400 + 840 strikes
occurs in each of these months in the 350 km 2 KS_ area (Eastern

Space and Missile Center 1982). Long term precipitation data

indicate a drought cycle of 23 _ 5 years (Davison and Bratton
1986).

Vegetation

Merritt Island contains a diverse flora; approximately 943

native or naturalized species and 124 exotics persisting at least

i0 years after cultivation occur (Sweet 1976, Poppleton et al.
1977). This flora contains elements of tropical and subtropical

distribution as well as temperate species.

Before the 1970's little detailed information is available

on the vegetation of Merritt Island. Davison and Bratton (1986)

have compiled and analyzed historical data on the vegetation

history of Canaveral National Seashore. They note impacts to

vegetation associated with logging of live oak and slash pine,

drainage of wetlands, land clearing for agriculture, increased

fire frequency, and grazing by cattle and hogs.

Harper (1921) surveyed Merritt Island and the adjacent

mainland. He noted the presence of slash pine flatwoods, palm

savannas, salt marsh, and mangrove swamp on Merritt Island.
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Dunes near the ocean had thickets of saw palmetto behind the sea
oats zone. Hammocks of a tropical nature occurred on shell
mounds. "Low hammock" occurred on marly sites and graded into
swamps. Old dunes (on the mainland) supported sand pine scrub.

Kurz (1942) described the sequence of vegetation on recent
and inland (older) dunes on Cape Canaveral. He noted a sea oats
zone followed by a zone dominated by saw palmetto with other
shrubs grading into a zone of llve oak, wax myrtle, tough
buckthorn, and bay. Elsewhere on Cape Canaveral on more acid
soils, he described areas dominated by sand llve oak, myrtle oak,
tallow wood (Ximenia americana), and blueberry (Vaccinlum).

Sweet (1976) described and mapped the vegetation of northern

Merritt Island between Banana Creek and Haulover Canal. He

differentiated several types of scrub communities. He termed

areas on the higher ridges of Merritt Island dominated by myrtle

oak, saw palmetto, Chapman oak, and other shrubs "scrubby

flatwoods." Less well drained sites dominated by saw palmetto,

sand llve oak, Lyonia spp., and wiregrass (Aristida spp.) but
lacking a pine canopy, he termed "pineless flatwoods." More

robust stands of saw palmetto around swales and ponds he termed

"pond margins." In coastal areas, he described two types,

"coastal flatwoods" dominated by saw palmetto, nakedwood
(Myrcianthes fragrans), live oak, and wax myrtle and nearer to

the shore "shrubless flatwoods" dominated by saw palmetto. These
coastal types are more generally classified as coastal strand
(Duever 1983b).

Stout (1980) mapped and described upland vegetation of KSC
and Cape Canaveral Air Force Station (CCAFS). He used the term

"coastal scrub" for scrub on Merrltt Island dominated by myrtle
oak, sand llve oak, saw palmetto, and other shrubs. On the

barrier beaches, he mapped and described as coastal strand the

saw palmetto thickets inland from the sea oats zone. He used

pine flatwoods for areas with pine overstory and also for similar

sites with a shrub layer of saw palmetto but lacking a pine
canopy.

Ongoing vegetation studies on KSC include the preparation of
a detailed vegetation map at 1:9600 scale (Provancha et al.

1986). The classification used in association with this map

recognizes two scrub types: oak scrub and saw palmetto scrub

(Schmalzer and Hinkle 1985). Slash pine flatwoods are mapped

only where there is a pine canopy. Oak scrub is dominated by

myrtle oak, sand live oak, Chapman oak, saw palmetto, and other
shrubs. It corresponds to the "coastal scrub" of Stout (1980)

and to the "scrubby flatwoods" of Sweet (1976) and other authors

(Abrahamson et al. 1984, Laessle 1942). Saw palmetto scrub is
dominated by saw palmetto with lesser amounts of oaks and other

shrubs. It corresponds to the "pineless flatwoods" of Sweet

(1976) and to the part of the pine flatwoods of Stout (1980)

lacking a pine canopy. On the basis of this vegetation map, it

9



has been estimated that 6830 ha (16876 ac) of scrub occur on KSC
of which 1284 ha (3173 ac) are oak scrub and 5546 ha (13703 ac)
are saw palmetto scrub; additionally, 505 ha (1247 ac) of
disturbed scrub and 5010 ha (12380 ac) of slash pine flatwoods
occur.

STUDY OBJECTIVES

This study has the major objectives of examining the
following topics:

i. Characterization of oak scrub vegetation on Merritt
Island compared to related vegetation throughout Florida in terms
of species composition and structure.

2. Response of oak scrub vegetation on Merritt Island to
fire and the effects of fire on stand composition and structure.

3. Effects of fire-caused changes on habitat quality for
certain endemic scrub animals.

4. Dynamics of biomass changes in relation to litter and
fuel accumulation as compared to different aged stands and to
other similar community types.

5. Dynamics of nutrient standing crops in relation to soils
and biomass pools in different aged stands and in comparison to
other community types.

These objectives are considered important for the following
reasons:

i. Scrub vegetation on Merritt Island is important as
habitat for animal species of special concern including Florida
scrub Jay (Aphelocoma coerulescens coerulescens), Florida mouse

(Peromyscus floridanus), gopher tortoise (Gopherus polyhemus),

and eastern indigo snake (Drymarchon corals couperi). KSC

contains the largest single remaining population of the endemic

Florida scrub Jay (Cox 1984). Threatened or endangered plants

occurring in scrub include Curtis's milkweed (Asclepias
curtissii), nodding pineweed (Lechea cernua), brown-haired

snoutbean (Rhynchosia cinerea), dwarf redbay (Persea borbonia
var. humilis), and sand spikemoss (Selaginella arenicola)
(Schmalzer and Hinkle 1985).

2. Effects of fire on composition and structure of oak

scrub vegetation are not well known. Structural changes may be

extremely important to species of concern such as the Florida

scrub Jay.

3. Biomass data on oak scrub vegetation have not been

reported. Information on nutrient concentration in scrub
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vegetation is also limited. Vickers et al. (1975) provided
concentrations of K, Na, Ca, Mg, Fe, Mn, Zn, Cu, and A1 in leaf
tissue of selected species from Merritt Island. Biomass and
nutrients in the saw palmetto/gallbery understory of slash pine
stands have been studied (Hough 1981, 1982, McNab et al. 1978,
McKee 1982). Effects of fire on nutrient standing crops in
biomass and soil of oak scrub vegetation are unknown.

4. A general policy of fire suppression was in effect
between 1963 and 1975 when FWS began a limited prescribed fire
program (Lee et al. 1981). The fire suppression policy was not
completely successful during this period and some wildfires did
occur (FWS, unpublished records). After severe wildfires during
the 1981 drought, a more extensive prescribed fire program was
instituted providing a three year fire cycle for most upland
habitats (Lee et al. 1981, Adrian et al. 1983).

METHODS

Community Composition and Structure

Four stands of oak scrub were selected for study in January
1983. These stands occurred in the same general area of Merritt
Island on what were considered similar sites. They differed in
the time since the last fire. Stand 1 was a reasonably well
developed scrub with oaks 1 to 2 m tall whose age was not known
initially. Stand 2 had been burned 4 years ago and Stand 3 was 2
years old (FWS/MINWR fire records). Stand 4 was an old stand
with oaks several meters high.

Stands were sampled using permanent line transects. Five
15 m transects were placed in Stand 1 and six each in the other
three stands. Transects were oriented north-south and both ends
of each were marked with metal poles. Percent cover was recorded
by species in two separate height classes, 0 to 0.5 m height and
greater than 0.5 m height (Mueller-Dombois and Ellenberg 1974).

Height of the vegetation was determined at four intervals
along the transects, 0, 5, 10, and 15 m. The maximum height of
any vegetation along the transect was also determined.
Vegetation sampling along these permanent line transects was
repeated in January 1985. The stands did not burn during this
interval.

Environmental Variables

Transects were located on topographic maps (Orsino and
Wilson ?.5' quadrangles) and elevation was estimated for each
transect. Only 5 ft contours are available on these maps,
however. Transects were also located on soils maps (Huckle et
al. 1974). Soil type, association, and parent material were
determined from the maps and associated survey.

Ii



Age Determination

In Stand 4 some entire trunks of myrtle oaks were harvested
during the biomass sampling. These were sectioned near the base,
sanded, and examined under a dissecting microscope in order to
count growth rings. Although growth rings were small they were
distinguishable. Representative individuals of llve oak and
myrtle oak were harvested from Stand 1 and similarly dated.

Biomass and Biomass Chemistry

Biomass samples were harvested on one square meter plots
located i0 m east of the vegetation sampling transects. All
above ground biomass, living and dead, and litter on these plots
were collected. Samples were separated into appropriate plant
parts; leaves, stems, trunks, rhizomes, were oven dried at I05°C
to constant weight. Dry weights were determined. For chemical
analyses, subsamples were taken from each transect within a stand
in which the taxa occurred and pooled. These samples were ground
in a Weber pulverizing mill to pass through a #50 mesh screen.
Ground material was oven dried at 105°C. For metals and
phosphorus analyses, 1 g of oven dried material was dry ashed at
450°C in a muffle furnace (Wolfe 1962) and taken up in
hydrochloric acid. Analyses were performed on a Perkin-Elmer
Model 3030 atomic absorption spectrophotometer using Perkin-Elmer
methods #ii.i (Na), #12.1 (Mg), #13.1 (AI), #19.1 (K) and #20.1
(Ca) (Perkin-Elmer Corporation 1982). Total phosphorus was
analyzed on a Technicon Autoanalyzer using method 696.82W
(Technicon Industrial Systems 1983d). For the determination of
TKN, a 0.25 g sample was digested in 2 ml concentrated H2S04, 2
ml 30% H202, and 4 ml of K2S04-CuS04 digestion mixture in a model
BD-40 block digester. The analysis was performed on a Technicon
Autoanalyzer using method 696-82W (Technicon Industrial Systems
1983b).

Standing crops of nutrients in biomass per stand were
calculated by multiplying the mean biomass of the plant part of a
particular species or other biomass category such as litter or
standing dead by its nutrient concentration.

Soil Sampling

Soil samples were taken from the 0 to 15 cm and 15 to 30 cm
depths near each transect. Depth and type of the litter layer
were recorded. Depth to the water table was determined by coring
with a soil auger until saturated soil was reached. Transects

were revisited seasonally (spring, summer, autumn) and the

determination of water table depth was repeated.
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Soil Chemistry

Soil samples were air dried. Analyses of all parameters
except organic matter were made in the NASA/KSC Environmental
Chemistry Laboratory. pH was determined on a i:I soil to water
slurry (McLean 1982) using an Orion pH meter. Conductivity was
measured on a 1:5 soll to water solution using a conductivity
meter (Rhoades 1982). Exchangeable cations, Ca, Mg, Na, and K,
were extracted in IN ammonium acetate (Knudsen et al. 1982,
Lanyon and Heald 1982) and analyzed by atomic absorption
spectrophotometer using the same methods as for biomass samples
(Perkin-Elmer Corporation 1982).

Available metals, Cu, Fe, Mn, and Zn, were extracted in
diethylenetriamlnepentaacetic acid (DTPA) (Olson and Ellis 1982,
Gambrell and Patrick 1982, Baker and Amacher 1982) and analyzed
by atomic absorption spectrophotometer using methods #29.1 (Cu),
#26.1 (Fe), #25.2 (Mn), and #30.1 (Zn). Exchangeable aluminum
was extracted in IN potassium chloride (Barnhisel and Bertsch
1982) and analyzed by atomic absorption spectrophotometry using
method #13.1 (Perkln-Elmer Corporation 1982).

Exchangeable nitrate (NO3-N) and ammonia (NH3-N) were
extracted in 2N potassium chloride (Keeney and Nelson 1982) and
then analyzed on a Technicon Autoanalyzer using methods 100-70W
(NO3-N) (Technicon Industrial Systems 1973) and 696-82W (NH3-N)
(Te_hnicon Industrial Systems 1983a). Total KJeldahl nitrogen
was determined by micro-KJeldahl digestion (Schuman et al. 1973)
followed by analysis on a Technicon Autoanalyzer using method
696-82W (Technicon Industrial Systems 1983b).

Available phosphorus was determined by extraction in
deionized water (Olsen and Sommers 1982) followed by analysis on
a Technicon Autoanalyzer using method 696-82W (Technicon
Industrial Systems 1983c).

Cation exchange capacity was determined by an ammonium
saturation method (Chapman 1965) followed by determination of
ammonium by using a Technicon Autoanalyzer (method 696-82W)
(Technicon Industrial Systems 1983a).

Organic matter was determined by the combustion method
(Nelson and Sommers 1982). Organic matter determinations were
made by Post, Buckley, Schuh, and Jernlgan, Inc., Orlando,
Florida.

Nutrient Standing Crops in Soil

Standing crops of nutrients in the soll were calculated from
nutrient concentrations and soil bulk density. Bulk density data
are given in soil surveys of Brevard County (Huckle et al. 1974)
and Volusia County (Baldwin et al. 1980). For typical scrub and
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of bulk densities a_e given.

flatwoods soll series a range I016 _I_ _2_'_ _/_5_/_a (6-15")
Typical values ar_ Paola (0-6"
1.43 to 1.50 g/cm_, Immokalee -

Immo_alee (6-15") 1.37 to 1.70 g/cm 5, Mxakka (0-6") 1.09 to 1.27

g/cm_, Myakka (6-15") 1.43 to 1.54 g_cm 5, Wabasso (0-7") 1.44

g/cm_, and Wabasso (7-12") 1.43 g/cm_. For nutrient standing
crop calculations, a value of 1.20 g/cm3 was used for the 0 to 15

cm (0-6") layer and a value of 1.50 g/cm3 was used for the 15 to

30 cm (6-12") layer. Calculations were made of the nutrient

standing crops per m _ for the 0 to 15 cm and 15 to 30 cm layer.

Statistical Analyses

Descriptive statistics and correlations were calculated

using STATS0 programs (Fullerton 1985) on a Hewlett-Packard 1000

computer. Multivariate analysis of variance (MANOVA) using a

repeated measures design was performed on an IBM PC/XT computer

using the MGLH procedure in the SYSTAT program package (Systat

1984). Univariate analysis of variance (ANOVA) using a repeated

measures design was performed using the same procedures.
Multivariate analysis of variance and univariate analysis of
variance of soils data were performed using SPSS programs

(Norusis 1986a, b) on an IBM PC/AT computer. Reciprocal

averaging ordination used the ORDIFLEX package (Gauch 1977) as

adapted to run on the HP-1000 computer (G. Markwell pets. com.).

Community beta diversity was estimated from the first axis

eigenvalue of the reciprocal averaging ordination using the
formula

HC =-_i2EV/(1-EV)/1.349 (Whittaker et al. 1979b) where HC is beta

diversity in half-change units and EV is the first axis

eigenvalue.

RESULTS

Age Determination

The time since fire of Stand 1 was determined to be 8 years

at the 1983 sampling and for Stand 4 was approximately 25 years.

Environmental Variables

Environmental variables varied betweem the four stands

(Table i). In particular, the water table was closer to the
surface in three of four seasons in Stand 2 than the other

stands. It should also be noted that Stand 2 had the only
transects in soils classified as Immokalee or Myakka (Table 2).
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Table 1. Selected environmental variables in the scrub stands.

Variable

All Plots Stand 1 Stand 2 Stand 3
_ N=23 _ N--5 _ N=6 N=6
x SD x SD x _D x SD

Stand 4
N--6

x SD

Elevation (m)

0 Horizon
Thickness
(cm)

Spring Water
Table Depth
(cm)

S_mer Water

Table Depth
(_)

Fall Water

Table Depth
(era)

Winter Water

Table Depth
(_)

2.0 0.2 2.1 0.0 1.9 0.3 2.1 0.0

0.5 0.6 0.9 0.4 0 0 0.2 0.4

-79.241.5 -53.811.5 -34.527.0 -93.211.9 -131.2 9.2

-102.6 43.5 -82.0 21.4 -64.7 47.7 -114.0 23.0 -146.2 23.9

-77.032.2 -108.222.9 -37.223.0 -72.8 9.1 -95.215.6

-98.0 35.0 -55.4 9.7 -82.3 15.8 -II1.7 18.8 -135.8 25.4
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Table 2. Categorical environmental variables in the scrub stands I.

Environmental
Variable All Plots Stand 1 Stand 2 Stand 3 Stand 4

Soil Type
Immokalee 8.7 --- 33.3 ......

Myakka 8.7 --- 33.3 ......
Paola 13.0 ......... 50.0

Pomello 69.6 I00.0 33.3 100.0 50.0

Soil Association

Paola-Pomella- 82.6 100.0 33.3 100.0 100.0

Astatula

Myakka-EuGallie- 17.4 --- 66.7 ......
Immokalee

Soil Parent Material
Marine Sands 87.0 100.0 100.0 100.0 50.0

Eolian Sands 13.0 ......... 50.0

Litter Type
Thin or Scattered 73.9 100.0 100.0 100.0 ---
Mor

Mor 26.1 ......... I00.0

1Data are percentages of plots.
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Community Composition

Species composition of the greater than 0.5 m layer was

generally similar across the four stands at the initial sampling

(Table 3). Myrtle oak, sand llve oak, Chapman oak, saw palmetto,

fetterbush (Lyonia lucida), staggerbush (Lyonia fruticosa), and

rusty lyonia were the most important species. In the less than
0.5 m layer, the most common species were sprouts of the larger

shrubs, small shrubs such as shiny blueberry (Vaccinium

myrslnltes), and wlregrass (Aristida stricta) (Table 4). The

four stands exhibited some differences in composition; saw

palmetto had greater dominance in Stand 2 (Table 3).

Reciprocal averaging ordination (Figures 2, 3) of the

greater than 0.5 m layer data for 1983 arrayed the transects

along a first axis along which saw palmetto had greatest

importance to the left while oaks increased in importance to the
right. Ordination scores on the first axis were correlated to

water table depths in all four seasons (Table 5).

Species composition was similar in 1985 to that in 1983

(Tables 3, 4). In the younger stands (2 and 3), percent cover of

many species in the greater than 0.5 m layer increased (Table 3)

due to height growth and canopy spread. In the older stands (i

and 4), minor changes occurred (Table 3). Conversely, in the
younger stands (2 and 3) many species decreased in cover in the

less than 0.5 m layer as they grew into the higher layer or as
thinning occurred.

Reciprocal averaging ordination of the 1985 greater than

0.5 m data gave a similar pattern to the 1983 ordination (Figures

4, 5). These first axis ordination scores were also most highly

correlated to water table depths (Table 6).

Ordination of the 1983 and 1985 data combined produced a
similar pattern (Figures 6, 7). Stands in 1983 and 1985 occurred

in the same general position along the ordination axes. Some

changes did occur. Two plots in Stand 2 shifted to the left on

the first axis from 1983 to 1985 as the dominance of saw palmetto
in them increased. The other four plots in Stand 2 shifted to

the right as the scrub oaks grew into the greater than 0.5 m

height class. Plots in Stand 3 also tended to shift rightward

with time as oak cover in the greater than 0.5 m height class
increased.

Species richness varied little between stands and changed

little between the two samplings of the same stand. There was an

increase in number of species in the greater than 0.5 m layer in
the younger stands from 1983 to 1985 (Figure 8) and a decrease in

the less than 0.5 m layer (Figure 9) (Tables 3, 4). Considering

both strata together, there was no significant change in species
richness with time (Figure I0).
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Table 5. Spearman rank order correlations between reciprocal
averaging scores and selected environmental variables
for the 1983 scrub data I.

Environmental

Variable
Reciprocal Averaging Ordination Scores

AXIS 1 AXIS 2 AXIS 3

Elevation
0 Horizon Thickness

Water Depth Spring

Water Depth Summer

Water Depth Fall

Water Depth Winter
Years Since Fire

0.489 ---

0.479 ---

-0.738 0.503
-0.501 0.450

-0.479 ---
-0.485 0.569

0.435 ---

ll--

ll--

ll--

--ll

ll--

lml

ICorrelations significant at p<0.05.
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Table 6. Spearman rank order correlations between reciprocal
averaging ordination scores and selected environmental
variables for the 1985 scrub data I.

Environmental
Variable

Reciprocal Averaging Ordination Scores
AXIS 1 AXIS 2 AXIS 3

Elevation
0 Horizon Thickness

Water Depth Spring

Water Depth Summer

Water Depth Fall

Water Depth Winter
Years Since Fire

0.489 .... 0.442
------ ------ ___

-0.807 ......

-0.609 ......
------ ------ ___

-0.639 ......
------ ------ --_--

1Correlations significant at p<O.05.
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Species richness in the greater than 0.5 m height

stratum in scrub stands sampled in 1983 and 1985.

Bars indicate 95% confidence interval about the

mean.
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Species richness in the less than 0.5 m height

stratum in scrub stands sampled in 1983 and 1985.

Bars indicate 95% confidence interval about the

mean.
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Species richness in both height strata in scrub

stands sampled in 1983 and 1985. Bars indicate

95% confidence interval about the mean.
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Community beta diversity for the 1983 scrub data was 2.3

half-changes (EV=.444), for 1985 data it was 2.2 half-changes
(EV=.425), and for the 1983 and 1985 data combined the beta

diversity was 2.2 half-changes (EV=.433). Thus, there was

essentially no change in beta diversity with time nor did

combining the two data sets produce greater community diversity.

Community Structure

Structural changes in the plant communities occurred with

time since fire. Mean total cover in the greater than 0.5 m

layer increased rapidly until about 8 years post-fire and then

leveled off (Figure Ii). In the less than 0.5 m layer, cover

decreased from years 2 through 6 and then fluctuated (Figure

12). Scrub mean height (Figure 13) increased rapidly at first

and then at a slower rate. Mean maximum height (Figure 14)

followed the same pattern.

Multivariate analysis of variance (MANOVA) based on the

structural parameters of percent cover for the greater than 0.5 m

class, percent cover for the less than 0.5 m class, mean height,
and mean maximum height indicated that there were significant

overall differences between stands (p!.001) and between times
(p<.001); the stand-by-time interaction was also significant

Univariate analysis of variance (ANOVA) for individual

structural parameters gave the following results: percent cover

for the greater than 0.5 m class was significantly different

between stands (p_.001) and between times (p<.001); the stand by

time interaction was also significant (p_.00i). Percent cover
for the less than 0.5 m class was significantly different between

stands (p_.001) and between times (p_.001); the stand-by-time

interaction was not significant. Mean height was significantly
different between stands (p_.001); the time effects and stand-by-

time interactions were not significant. Mean maximum height was

significantly different between stands (p_.001) and between times

(p_.05); the stand-by-time interactions were not significant.

Biomass

Biomass changes occurred with time since fire (Table 7).

The trunks of saw palmetto are fire resistant and form a

refractory part of the oak scrub community. Live biomass

(excluding saw palmetto trunks) increased with time since fire,
rapidly at first and then at a slower rate (Figure 15). Litter

biomass (Figure 16) was highly variable in the most recently
burned stand due to the patchy intensity of the fire which

removed most litter in some places but not others. Litter

increased with age to about year 8 and then leveled off. As with

litter, standing dead biomass was highly variable in the recently
J

/

31



MEAN TOTAL
GREATER THAN

COVER
0.5 rn

150

140

130

120

110

100

V

n,,.
i,I
>.
0
(j

90

80-

70-

60-

50-

30

O0 .i i i I j5 t0 15 20 25 30

Figure ii.

AGE (years)
Mean total cover in the greater than 0.5 m

height stratum in scrub stands sampled in 1983
and 1985. Bars indicate 95% confidence interval

about the mean.

32



100

MEAN
LESS

TOTAL
THAN

COVER
0.5 m

Figure 12.

9O

8O

7O

60

5O
n,"

4O

o 30

20

10

0 I I I I I

0 5 10 15 20 25 30

AGE (years)

Mean total cover in the less than 0.5 m height stratum

in scrub stands sampled in 1983 and 1985. Bars indicate
95% confidence interval about the mean.

33
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interval about the mean.
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Figure 15. Live blomass (oven-dry weight, excluding palmetto

rhizomes) of vegetation in scrub stands sampled in

1983. Bars indicate 95% confidence interval about

the mean.
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burned stand (Figure 17). However, it did not show any trend of

increase with time. The composition of the standing dead biomass

did change with time. In the most recently burned stands, it was

comprised of stems of shrubs and saw palmetto which were killed

by the fire but were not consumed by it. After some years, these

stems decay and fall to the ground. Observations suggest about 5

to 6 years were required for this decay; fire-killed standing
dead was still prevalent in the 4 year old stand but not in the 6

or 8 year old one. Replacing the fire-killed stems in the
standing dead category for 6 to 8 year old stands were dead stems

and branches of shrubs and dead leaves of saw palmetto which had

grown since the last fire. Biomass data are summarized in Figure
18.

Biomass Chemistry

Leaf tissue from certain scrub species from Merritt Island

was analyzed by Vickers et al. (1975) for potassium, sodium,

calcium, magnesium, aluminum, iron, zinc, and copper. Data for
elements in common between that and the current study are

summarized in Table 8.

Total KJeldahl nitrogen concentrations in scrub vegetation

are given in Table 9. Concentrations of nitrogen in live biomass

showed no trend with time since fire. Standing crops of nitrogen

are summarized in Table I0. Saw palmetto rhizomes contained

considerable quantities of nitrogen. Standing dead and litter

were also significant pools (Figure 19). Standing dead was

particularly important in the youngest stand. Increases in live

biomass with time also increased nitrogen standing crop but this

was clear only when saw palmetto rhizomes were not considered.

Accumulation occurred primarily in stem biomass in the oldest

stand. Leaf standing crops changed little.

Total phosphorus concentrations in scrub vegetation are

given in Table ll. Concentrations showed no consistent trends

with time for species present in all stands. Standing crops of

phosphorus are summarized in Table 12. Saw palmetto rhizomes,

litter, and standing dead material contained major pools of

phosphorus (Figure 20). Litter concentrations and standing crops
were elevated in the 2 year old stand. Phosphorus also

accumulated in live biomass with time since fire, primarily in

stem tissue.

Calcium concentrations in scrub vegetation are given in

Table 13. Time since fire did not have a consistent effect on

these concentrations in live biomass. Standing crops of calcium

are summarized in Table 14 and Figure 21. Litter concentration

and hence standing crop were somewhat higher in the youngest
stand. Calcium accumulated in stem biomass in the oldest stand.
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in scrub stands sampled in 1983. Bars indicate 95%
confidence interval about the mean.
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Table 9. Concentration of total KJeldahl nitrogen (TKN) (%) in

scrub vegetation.

TAXA

AGE

(yrs)
PLANT STAND 3 STAND 2 STAND 1 STAND 4

PART 2 4 8 25

Aristida stricta

Befaria racemosa

Cyperaceae

Hypericum spp.

Ilex glabra

Lyonia spp.

Lyonia ligustrlna

Myrica cerifera

Quercus chapmanii

Q. myrtifolla

Q. virginiana var.

geminata
Serenoa repens

Vaccinium myrsinites
Ximenia americana

Misc. Herbs

Standing Dead-
Saw Palmetto

Standing Dead-

Woody

Litter

- 1.4 1.3 1.4 -

leaves 1.2 a - -

stems 1.5 a - -

- a - - a

- - 1.5 - -

leaves - 2.1 - -

stems - 2.7 - -
leaves 5.4 I. 8 1.5 2.1

stems 2.7 2.9 2.0 3.8
stems - - - (2.9) b

leaves - 2.8 3.4
stems - b 2.7

leaves i. 6 - 2.7 2.0

stems I. 7 - 2.2 2.0

leaves 2.4 3.0 2.2 3.5

stems 2.3 I. 5 2.0 2.3

t funks - - - 2.5

leaves I. 9 I. 9 2.1 I. 7

stems 1.5 4.3 i. 8 1.8

leaves I. 7 2.0 2.2 i. 8

stems i. 7 i. 8 2.2 I. 1

rhizomes (1.4)c (1.4)c 1.4 (1.4) c

- 2.1 1.9 2.2 (2.1) c
leaves 3.1 - - -
stems 2.1 - - -

- - a 2.0 -

- 1.8 2.4 2.0 3.5

- 6.1 2.4 3.8 I.I

- 2.8 1.6 2.6 1.4

ainsufficient sample for analysis
bestimated from other data

Cestimated from other data
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Table 10.

TAXA

Standing crop of total
in scrub vegetation.

AGE
(yrs)
PLANT STAND

PART 2

Kjeldahl nitrogen (TKN)

3 STAND 2 STAND 1
4 8

(g/m 2 )

STAND 4

25

Aristida stricta
Befaria racemosa

Cyperaceae

Hypericum spp.

llex glabra

Lyonia spp.

Lyonia ligustrina

Myrica cerifera

Quercus chapmanii

Q. myrtifolia

Q. virginiana

geminata

Serenoa repens

var.

Vaccinium

myrsinites
Ximenia americana

- 0.0462

leaves 0.2196

stems 0.2955

-- a

leaves

stems

leaves 2.1978
stems 0.5589

stems

leaves
stems

leaves 0.3440

stems 0.2635

leaves 3.7488

stems 8.9930

trunks

leaves 1.0887

stems 0.9645
leaves 1.6881

stems 0.2669
rhizomes

0.0871 0.3836
(0.0060)c -

(o.oo45)c -

o.o3oo
0.0672 -

0.0945 -

0.5940 0.7785
0.7047 1.0480

m

0.o28o o.0578
(0.0405)b, c 0.0459

- 1.2150

- 2.0174
2.1240 3.2560

2.6055 7.2820
R

1.5352 1.1970

5.0396 2.5740

7.8700 7.2292

1.7406 1.2694

45.3544

0.1034

(23.7538)c(41.1558)c

0.0420 0.0152

m

a

m

0.9870
4.9514

(I.7186)c

0.3640

0.7260

5.355O
19.4856

14.1875

1.3345
4.7610

1.1934

0.2123

(3.1248) c

(0.0735) c

Misc. Herbs
Standing Dead-

Saw Palmetto

Standing Dead-Woody - 49.3795

Litter - 12.3004

Total-live-leaves 9.5364

Total-live-stems 12.2096

Total live excluding 21.7460

saw palmetto rhizomes

Total live 45.4998
Total standing dead 50.3389

Total standing dead 62.6393
and litter

Total above ground 108.1391

Total above ground 84.3853

exluding saw palmetto rhizomes

leaves 0.1612 - - -

stems 0.8673 - - -

- - (0.0160)c 0.5200 -
- 0.9594 8.3712 11.5120 1.7325

5.2608 5.0274 5.7167

8.2080 30.4486 15.2782

12.3727 14.7405 9.3074
10.2299 14.2367 46.0424

22.6026 28.9772 55.3498

63.7584 74.3316 58.4746

13.6320 16.5394 7.4492

21.8400 46.9880 22.7274

85.5984 121.3196 81.2020

44.4426 75.9652 78.1072

ainsufficient sample for analysis
bestimated from other data

Cestimated from other data
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Figure 12. Total Kjeldahl nitrogen (TKN) standing crops in the scrub stands.
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Table II. Concentration of total phosphorus (P) (%) in scrub
vegetation.

TAXA

AGE

(yrs)

PLANT STAND 3 STAND 2 STAND 1 STAND

PART 2 4 8 25

4

Aristida stricta
Befaria racemosa

Cyperaceae

Hypericum spp.

llex glabra

Lyonia spp.

Lyonia ligustrina

Myrica cerifera

Quercus chapmanii

Q. myrtifolia

Q. virginiana
geminata

Serenoa repens

var.

- o.o65 O.O25 o.o3o -
leaves 0.155 a - -

stems 0.040 a - -

- a - - a

- - O.O65 - -
leaves - 0.050 - -
stems - 0.065 - -

leaves 0.070 0.070 0.035 0.075

stems 0.035 0.030 0.025 0.045

stems - - - (0.038)b

leaves - 0.040 0.030 -
stems - 0.030 0.010 -

leaves 0.150 - 0.095 0.195

stems 0. I00 - 0.060 0.065
leaves 0.080 0.080 0.058 0.I15

stems 0.060 0.060 0.050 0.060

trunks - - - 0.040

leaves 0.095 0.095 0.075 0.085

stems 0.080 0.070 0.055 0.060

leaves 0.070 0.079 0.075 0.065

stems 0.068 0.070 0.078 0.072

rhizomes (0.080)b (0.080)b 0.080 (0.080) b

0.070 0.060 0.045 (0.058) b
0.410 - - -

0.II0 - - -

- a 0.040 -
0.025 0.020 0.015 0.020

Vaccinium myrsinites -
Ximenia americana leaves

stems

Misc. Herbs

Standing Dead
Saw Palmetto

Standing Dead

Woody
Litter

0.020 0.015 0.100 0.025

0.075 0.015 0.015 0.025

ainsufficient sample for analysis
bestimated from other data
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Table 12.

TAXA

Standing crop of total phosphorus (P) (g/m 2 x 10 -3 )

in scrub vegetation.

AGE

(yrs)
PLANT STAND 3 STAND 2 STAND 1 STAND
PART 2 4 8 25

Aristida stricta
Befaria racemosa

Cyperaceae

Hypericum spp.
Ilex glabra

Lyonia spp.

Lyonia ligustrina

Myrica cerifera

Quercus chapmanii

Q. myrtifolia

Q. virginiana vat.

geminata

Serenoa repens

Vaccinium

myrslnites
Ximenia americana

- 2.15 1.68 8.22 -

leaves 28.37 (0.78) b - -

stems 7.88 (0.12) b - -

-- a - - a

- - 1.30 - -
leaves - 1.60 - -

stems - 2.28 - -

leaves 28.49 23.10 18.17 35.25

stems 7.25 7.29 13.10 58.64
stems - - - (20.50)b

leaves - 0.40 0.51 -
stems - 0.45 0.17 -

leaves 32.25 - 42.75 35.49
stems 15.50 - 55.02 23.60

leaves 124.96 56.64 85.84 175.95

stems 234.60 104.22 182.05 508.32

trunks - - - 227.00

leaves 54.44 76.76 42.75 66.73

stems 51.44 82.04 78.65 158.70

leaves 69.51 310.87 246.45 43.10

stems 10.68 67.69 45.01 13.90

rhizomes (1357.36)b(2351.76)b 2591.68 (178.56) b

- 1.40 0.48 2.12 (2.03) b

Misc. Herbs

Standing Dead-
Saw Palmetto

Standing Dead-Woody
Litter

Total-llve-leaves

Total-live-stems

Total live excluding

saw palmetto rhizomes
Total live

Total standing dead

Total standing dead
and litter

Total above ground

Total above ground

exluding saw palmetto

leaves 21.32 - - -

stems 45.43 - - -
- - (0.32) b 10.40 -

- 13.33 69.76 86.34 9.90

161.90 32.88 132.30 129.93

329.48 76.95 175.67 272.83

362.89 473.93 457.21 358.55

372.78 264.09 374.00 1010.66
735.67 738.02 832.21 1369.21

2093.03 3089.78 3422.89 1547.77
175.23 102.64 218.64 139.83

504.71 179.59 394.31 412.66

2597.74 3269.37 3817.20 1960.43

1240.38 917.61 1225.52 1781.87

rhizomes

ainsufficient sample for analysis
bestimated from other data
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Table 13. Concentration of calcium (Ca) (%) in scrub vegetation.

AGE

(yrs)
PLANT STAND 3 STAND 2 STAND 1 STAND

TAXA PART 2 4 8 25

Aristida stricta

Befaria racemosa

Cyperaceae

Hypericum spp.

llex glabra

Lyonia spp.

Lyonia ligustrina

Myrica cerifera

Quercus chapmanii

Q. myrtifolia

Q. virginiana

geminata
Serenoa repens

var.

Vaccinium

myrsinites
Ximenia americana

Misc. Herbs

Standing Dead
Saw Palmetto

Standing Dead

Woody
Litter

- 0.122 0.083 0.070
leaves 0.426 a -

stems 0.208 a -

m a _

- - 0.742 -

leaves - 0.785 -

stems - 0.677 -

leaves 1.046 0.995 0.584

stems 0.489 0.518 0.340

stems - - -

leaves - 1.058 0.559

stems - 0.846 0.512

leaves 0.481 - 0.835
stems 0.608 - 0.850

leaves 0.587 0.669 0.650

stems 0.771 0.708 0.700

trunks - - -
leaves 0.503 0.525 0.603

stems 0.887 0.536 0.844

leaves 0.090 0.172 0.237

stems 0.222 0.200 0.230

rhizomes (0.194) b (0.194) b 0.194

- 0.485 0.660 0.739

leaves 1.381 - -

stems 0.584 - -

- - a 0.591

0.083 0.146 0.120

m

0.633 0.694 0.646

m

a

O.548
0.464

(0.453) b

O.658
1.243
0.604

O.837

0.877
0.547

0.926
o,116
0.220

(0.194) b
(0.628) b

m

m

0.i04

0.629

0.871 0.280 0.400 0.763

ainsufflcient sample for analysis
bestimated from other data
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Table 14.

TAXA

Standing crop
vegetation.

AGE
(yrs)
PLANT
PART

of calcium (Ca) (g/m 2 x 10-2) in scrub

STAND 3 STAND 2 STAND 1 STAND 4
2 4 8 25

Aristida strlcta
Befaria racemosa

Cyperaceae
Hypericum spp.
Ilex glabra

Lyonia spp.

Lyonia ligustrina
Myrica cerifera

Quercus chapmanii

Q. myrtifolia

Q. virginiana vat.
geminata

Serenoa repens

Vaccinium
myrsinites

Ximenia americana

- 0.40 0.56
leaves 7.80 (0.21) b
stems 4.10 (0.06) b

m a m

- - 1.48

leaves - 2.51

stems - 2.37

leaves 42.57 32.83

stems 10.12 12.59

stems - -

leaves - 1.06
stems - 1.27

leaves 10.34 -

stems 9.42 -

leaves 91.69 47.37

stems 301.46 122.98

trunks - -

leaves 28.82 42.42

stems 57.03 62.82
leaves 8.94 67.68

stems 3.49 19.34

rhizomes (3291.60)b(5703.02) b

- o.97 0.53

1.92
D

30.31

17.82

o.95
0.87

37.58

??.95
96.20

254.87

34.37

120.69

77.88
13.27

6284.82

3.47

Misc. Herbs

Standing Dead-
Saw Palmetto

Standing Dead-Woody - 512.41
Litter - 382.63

Total-llve-leaves 198.71

Total-live-stems 409.74

Total llve excluding 608.45

saw palmetto rhizomes
Total llve 3900.05

Total standing dead 516.83

Total standing dead 899.46
and litter

Total above ground 4799.51

Total above ground 1507.91

exluding saw palmetto rhizomes

a

A

25.76

60.46

(27.32)b

11.98
45.12

92.41

709.11
497.7O
42.94

244.93

7.69

4.25

(433 O1 )b
(2:20) b

leaves 7.18 - - -

stems 24.12 - - -

- - (0.47) b 15.37 -
- 4.42 50.92 69.07 5.15

152.12

143.64

197.12
221.43

418.55

6121.57

203.04
346.68

85.47
468.44
298.05
485.47
783.52

7068.34

154.54

622.98

7691.32

1406.50

6468.25

?65.23

326.89
832.66
182.98

1588.89
1771.87

2204.88
332.04

1164.70

3369.58
2936.57

ainsufficient sample for analysis
bestimated from other data
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Magnesium concentrations in scrub vegetation are given in
Table 15. No trends with time since fire in magnesium

concentrations in live biomass were apparent. Magnesium standing

crops are summarized in Table 16. Saw palmetto rhizomes, litter,

and standing dead material were substantial pools of magnesium in
this system (Figure 22). Stem biomass in the oldest s_and

contained substantial magnesium.

Sodium concentrations in scrub vegetation are given in Table

17. Concentrations in live biomass, litter, and standing dead

showed no trend with time since fire. Standing crops of sodium

are summarized in Table 18. Saw palmetto rhizom_s represented a
significant pool (Figure 23). Stem biomass accumulated some
sodium with time.

Potassium concentrations in scrub vegetation are given in

Table 19. No trends with time since fire in concentrations in

live biomass were apparent. Litter and standing dead

concentrations were elevated in the 2 year old stand. Standing

crops of potassium are summarized in Table 20. Saw palmetto

rhizomes, litter, and standing dead material represented

significant pools (Figure 24). The standing dead pool was
elevated in the 2 year old stand.

Aluminum concentrations in scrub vegetation are given in
Table 21. Aluminum concentrations showed no trend with time

since fire. Standing crops of aluminum are summarized in Table

22. Saw palmetto rhizomes and litter were major pools; standing
dead material contained relatively smaller amounts. Live biomass

(excluding palmetto rhizomes) generally increased in importance

as a pool with time since fire (Figure 25).

Soil Chemistry

Chemical characteristics of scrub soils in the four stands

are summarized in Table 23. Data for all parameters are within
the range of values reported for inland scrub soils on Merritt

Island (Pomello series) by Madsen (1980) (Table 24).

Multivariate analysis of variance (MANOVA) indicated

significant differences (Wilks' lambda, p=.005) between the four
stands based on the set of soil parameters for the 0 to 15 cm

layer. Significant differences (Wilks' lambda, p!.001) also
existed between the four stands for the 15 to 30 cm layer.

One-way analysis of variance (ANOVA) of the 0 to 15 cm layer

of the four stands indicated that all soil parameters except

nitrate-nitrogen, aluminum and manganese differed between the

four stands (Table 25). For the 15 to 30 cm layer, all soil

parameters except cation exchange capacity, and aluminum, copper,
iron, manganese, and zinc concentrations differed between the

four stands (Table 26). Multiple range tests (Tables 25, 26)
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Table 15. Concentration of magnesium (Mg) (_) in scrub vegetation.

AGE

(yrs)

PLANT STAND 3 STAND 2 STAND 1 STAND

TAXA PART 2 4 8 25

Aristida stricta - 0.056 0.059 0.063 -
Befaria racemosa leaves 0.150 a - -

stems 0.077 a - -

Cyperaceae - a - - a
Hypericum spp. - - 0.258 - -

Ilex glabra leaves - 0.332 - -

stems - 0.154 - -

Lyonla spp. leaves 0.263 0.219 0.189 0.218

stems 0.136 0. II0 0.107 0.094

Lyonia ligustrina stems - _ _ (0.112)b
Myrica cerifera leaves - 0.332 0.259 -

stems - 0.206 0.114 -

Quercus chapmanli leaves 0.164 - 0.188 0.191
stems 0.149 - 0.133 0.162

Q. myrtifolia leaves 0.170 0.140 0.156 0.178

stems 0.142 0.122 0.138 0.145

trunks - - - 0.059
Q. virginiana vat. leaves 0.155 0.149 0.165 0.158

geminata stems 0.152 0.124 0.139 0.117
Serenoa repens leaves 0.123 0.180 0.304 0.148

stems 0.124 0.111 0.140 0.070

rhlzomes (0.126) b (0.126)b 0.126 (0.126)b
Vaccinlum - 0.172 0.148 0.165 (0.162)b

myrslnltes

Ximenia americana leaves 0.224 - _ _

stems 0.080 - - _

Misc. Herbs - - a 0.122 -

Standing Dead 0.113 0.iii 0.131 0.093
Saw Palmetto

Standing Dead 0.102 0.078 0.105 0.Ii0
Woody

Litter - 0.149 0.090 0.106 0.099

Insufflclent sample for analysis
estimated from other data
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Table 16. Standing crop of magnesium (Mg) (g/m 2 x 10-3) in scrub
vegetation.

TAXA

AGE
(yrs)
PLANT STAND3 STAND 2 STAND 1 STAND
PART 2 4 8 25

4

Aristida stricta
Befaria racemosa

Cyperaceae

Hypericum spp.
Ilex glabra

Lyonia spp.

Lyonia ligustrina

Myrica cerifera

Quercus chapmanii

Q. myrtifolia

Q. virginiana vat.

geminata

Serenoa repens

Vaccinium

myrsinites

Ximenia americana

- 1.85 3.95 17.26 -
leaves 27.45 (0.75)b - _

stems 15.17 (0.23) b - -

-- a - - a

- - 5.16 - -
leaves - 10.62 - -

stems - 5.39 - -

leaves 107.04 72.27 98.09 102.46
stems 28.15 26.73 56.07 122.48

stems - - - (67.54)b

leaves - 3.32 4.40 -

stems - 3.09 1.94 -

leaves 35.26 - 84.60 34.76

stems 23.10 - 121.96 58.81

leaves 265.54 99.12 230.88 272.34

stems 555.22 211.91 502.46 1228.44

trunks - - - 334.83

leaves 88.82 120.39 94.05 124.03

stems 97.74 145.33 198.77 309.47

leaves 122.14 708.30 998.94 98.12

stems 19.47 107.34 80.78 13.15

rhizomes (2137.84)b(zT04.02)b 4081.90 (281 23) b
- 3.44 1.18 7.76 (5167 )b

leaves 11.65 - - -

stems 33.04 - - -

- - (0.98) b 31.72 -

- 60.23 387.17 754.04 46.04

Misc. Herbs

Standing Dead-
Saw Palmetto

Standing Dead-Woody - 825.69 170.98 138.92 571.67

Litter - 654.56 461.70 1241.37 1080.39

Total-live-leaves 663.19 1026.04 1567.70 637.38

Total-llve-stems 771.89 500.02 961.98 2135.08

Total live excluding 1435.08 1526.06 2529.68 2772.46
saw palmetto rhizomes

Total live 3572.92 5230.28 6611.58 3053.69

Total standing dead 885.92 558.15 892.96 617.71

Total standing dead 1540.48 1019.85 2134.33 1698.10
and litter

Total above ground 5113.40 6250.13 8745.91 4751.79

Total above ground 2975.56 2545.91 4664.01 4470.56
exluding saw palmetto rhizomes

ainsufficient sample for analysis
bestimated from other data
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Table 17. Concentration of sodium (Na) (%) in scrub vegetation.

AGE

(yrs)
PLANT STAND 3 STAND 2 STAND 1 STAND 4

TAXA PART 2 4 8 25

Aristlda stricta - 0.069 0.051 0.053 -
Befaria racemosa leaves 0.043 a - -

stems 0.026 a - -

Cyperaceae - a - - a
Hypericum spp. - - 0.249 - -

Ilex glabra leaves - 0.185 - -

stems - 0.055 - -

Lyonia spp. leaves 0.075 0.074 0.073 0.I13

stems 0.059 0.059 0.051 0.068

Lyonia ligustrina stems - - - (0.059)b
Myrica cerifera leaves - 0.176 0.209 -

stems - 0.063 0.041 -

Quercus chapmanii leaves 0.046 - 0.049 0.044

stems 0.042 - 0.049 0.042

Q. myrtifolia leaves 0.045 0.034 0.053 0.037

stems 0.042 0.047 0.048 0.041

trunks - - - 0.033

Q. virginiana vat. leaves 0.037 0.055 0.037 0.039
geminata stems 0.058 0.053 0.077 0.046

Serenoa repens leaves 0.061 0.116 0.086 0.068

stems 0.228 0.507 0.313 0.238

rhizomes (0.528) b (0.528) b 0.528 (0.528) b

Vaccinlum - 0.068 0.081 0.058 (0.069) b

myrsinites
Ximenia americana leaves 0.135 - - -

stems 0.091 - - -
- - a 0.045 -

0.049 0.047 0.054 0.047

Misc. Herbs

Standing Dead
Saw Palmetto

Standing Dead

Woody
Litter

0.048 0.039 0.027 0.045

0.043 0.032 0.026 0.028

ainsufficient sample for analysis
bestimated from other data
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Table 18. Standing crop of sodium (Na) (g/m 2 x 10-3) in scrub

vegetation.

TAXA

AGE

(yrs)
PLANT STAND 3 STAND 2 STAND

PART 2 4 8

STAND 4

25

Aristida stricta

Befaria racemosa

Cyperaceae

Hypericum spp.

Ilex glabra

Lyonia spp.

Lyonia llgustrina

Myrica cerifera

Quercus chapmanii

Q. myrtifolia

Q. virginiana

var. geminata

Serenoa repens

Vaccinium

myrsinites
Ximenia americana

- 2.28 3.42 14.52

leaves 7.87 (0.22)b -

stems 5.12 (0.08) b -

m a I i

- - 4.98 -

leaves - 5.92 -

stems - 1.93 -

leaves 30.53 24.42 37.89

stems 12.21 14.34 26.72

stems - - -
leaves - 1.76 3.55

stems - 0.95 0.70

leaves 9.89 - 22.05

stems 6.51 - 44.93

leaves 70.29 24.07 78.44
stems 164.22 81.64 174.77

trunks - - -

leaves 21.20 44.44 21.09

stems 37.29 62.12 Ii0.ii

leaves 60.57 456.46 282.60
stems 35.80 490.27 180.60

rhizomes(8958.58)b(15521.62) b 17105.09
- 1.36 0.65 2.73

a

m

m

I

53.11
88.60

(35.58) b

I

i

8.01

15.25

56.61

347.35

186.29

30.62

121.67

45.08

45.93

(1178.50) b
(2.42) b

leaves 7.02 - - -

stems 37.58 - - -

Misc. Herbs - - (0.36) b ll.70 -

Standing Dead- - 26.12 163.94 310.82 23.27

Saw Palmetto

Standing Dead-Woody - 388.56 85.49 35.72
Litter - 188.90 164.16 304.49

Total-live-leaves 211.01 566.70 474.57

Total-llve-stems 298.73 651.33 537.83

Total live excluding 509.74 1218.03 1012.40

saw palmetto rhizomes
Total llve 9468.32 16739.65 18117.49

Total standing dead 414.68 249.43 346.54

Total standing dead 603.58 413.59 651.03
and litter

Total above ground 10071.90 17153.24 18768.52

Total above ground 1113.32 1631.62 1663.43

exludlng saw palmetto rhizomes

233.87
3O5.56

195.85
84O.67

1036.52

2215.02

257.14

562.70

2777.72

1599.22

ainsufficient sample for analysis
bestimated from other data
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Table 19. Concentration of potassium (K) (%) in scrub vegetation.

AGE

(yrs)
PLANT STAND 3 STAND 2 STAND 1 STAND

TAXA PART 2 4 8 25

4

Aristida stricta - 0.092 0.148 0.202
Befaria racemosa leaves 0.805 a -

stems 0.137 a -

Cyperaceae - a - -

Hypericum spp. - - 0.575 -

Ilex glabra leaves - 0.296 -
stems - 0.182 -

Lyonia spp. leaves 0.294 0.361 0.215
stems 0.128 0.284 0.242

Lyonia llgustrina stems - - -
Myrica cerifera leaves - 0.221 0.419

stems - 0.549 0.146

Quercus chapmanii leaves 0.263 - 0.194
stems 0.226 - 0.203

Q. myrtifolia leaves 0.364 0.355 0.242

stems 0.195 0.167 0.212
trunks - - -

Q. virginiana vat. leaves 0.340 0.189 0.309

geminata stems 0.298 0.308 0.154
Serenoa repens leaves 0.368 0.403 0.379

stems 1.045 0.442 0.748

rhizomes (0.976) b (0.976) b 0.976
Vaccinlum - 0.264 0.259 0.258

myrslnites
Xlmenia americana leaves 1.342 - -

stems 0.683 - -

Misc. Herbs - - a 0.170

Standing Dead 0.169 0.107 0.258
Saw Palmetto

Standing Dead 0.422 0.057 0.044

Woody
Litter - 0.163 0.035 0.067

i

I

1

a
I

I

m

O.385
0.155

(0.202) b
m

0.336

o.2o5
(0.320) b

0.145
0.136

0.295

o.158
0.672

0.727

(0.976) b
(0.260)b

m

I

o.131

0.079

0.092

ainsufficlent sample for analysis
bestimated from other data
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Table 20. Standing crop of potassium (K) (g/m 2 x 10-3) in scrub
vegetation.

TAXA

AGE
(yrs)
PLANT STAND 3 STAND 2 STAND 1 STAND
PART 2 4 8 25

Aristida stricta
Befaria racemosa

Cyperaceae
Hypericum spp.
Ilex glabra

Lyonia spp.

Lyonia ligustrina
Myrica cerifera

Quercus chapmanii

Q. myrtifolia

Q. virginiana
vat. geminata

Serenoa repens

Vaccinium
myrsinites

Ximenla americana

Misc. Herbs
Standing Dead
Saw Palmetto
Standing Dead
Woody
Litter
Total-llve-leaves
Total-llve-stems

- 3.04 9.92 55.35 -
leaves 147.32 (4.03) b - -
stems 26.99 (0.41) b - -

- a - - a

- - 11.50 - -
leaves - 9.47 - -

stems - 6.37 - -

leaves 119.66 I19.13 111.59 180.95

stems 26.50 69.01 126.81 201.97

stems - - - (121.81)b

leaves - 2.21 7.12 -
stems - 8.24 2.48 -

leaves 56.55 - 87.30 61.15

stems 35.03 - 186.15 74.42

leaves 568.57 251.34 358.16 489.60

stems 762.45 290.08 771.89 1228.44

trunks - - - 771.80

leaves 194.82 152.71 176.13 231.58

stems 191.61 360.98 220.22 417.91
leaves 365.42 1585.81 1245.39 445.54

stems 164.07 427.41 431.60 140.31

rhizomes(16559.79)b(28691.47) b 31621.42 (2178.43)b

- 5.28 2.07 12.13 9.10

leaves

stems

D

w

u

Total live excluding

saw palmetto rhizomes
Total llve

Total standing dead

Total standing dead
and litter

Total above ground
Total above ground

exluding saw palmetto

69.78 - - -

282.08 - - -

- (1.36) b 44.20 -

90.08 373.22 1485.05 64.85

3416.09 124.94 58.21 410.56

716.06 179.55 784.64 1004.00

1530.44 2149.55 2097.37 1417.92
1488.73 I162.50 1739.15 2956.66

3019.17 3312.05 3836.52 4374.58

19578.96 32003.52 35457.94 6553.01

3506.17 498.16 1543.26 475.41

4222.23 677.71 2327.90 1479.41

23801.19 32681.23 37785.84 8032.42

7241.40 3989.76 6164.42 5853.99

rhizomes

ainsufficient sample for analysis
bestimated from other data
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Table 21. Concentration of aluminum (A1) (%) in scrub vegetation.

AGE

(yrs)

PLANT STAND 3 STAND 2 STAND 1 STAND 4

TAXA PART 2 4 8 25

Aristida stricta - 0.0003 0.0019 0.0033 -
Befaria racemosa leaves 0.0036 a - -

stems 0.0002 a - -

Cyperaceae - a - - a
Hypericum spp. - - 0.0044 - -

Ilex glabra leaves - 0.0034 - -

stems - 0.0003 - -

Lyonia spp. leaves 0.0015 0.0013 0.0054 0.0022

stems 0.0015 <0.0001 0.0015 0.0034

Lyonia ligustrina stems - - - (0.0016)b
Myrica cerifera leaves - 0.0025 0.0034 -

stems - 0.0002 0.0020 -

Quercus chapmanii leaves 0.0013 - 0.0064 0.0010

stems 0.0012 - 0.0027 0.0022

Q. myrtifolla leaves 0.0012 0.0006 0.0020 0.0016

stems 0.0002 0.0001 0.0026 0.0012

trunks - - - 0.0008

Q. virginiana vat. leaves 0.0030 0.0029 0.0026 0.0015

geminata stems 0.0005 0.0005 0.0039 0.0013
Serenoa repens leaves 0.0013 <0.0001 0.0012 <0.0001

stems 0.0001 0.0017 0.0078 0.0022

rhizomes (0.0026) b (0.0026) b 0.0026 (0.0026)b

Vaccinium - 0.0027 0.0061 0.0046 (0.0045)b
myrsinites

Ximenia americana leaves 0.0026 - - -

stems 0.0053 - - -

- - a 0.0037 -
0.0003 0.0005 0.0020 0.0012

Misc. Herbs

Standing Dead
Saw Palmetto

Standing Dead

Woody
Litter n

0.0006 0.0003 0.0012 0.0010

0.0040 0.0067 0.0051 0.0015

ainsufficient sample for analysis
bestimated from other data
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Table 22.

TAXA

Standing crop
vegetation.

of aluminum

AGE

(yrs)
PLANT STAND 3
PART 2

(AI) (g/m 2 x 10 -4 ) in scrub

STAND 2 STAND 1 STAND 4
4 8 25

Aristida stricta

Befaria racemosa

Cyperaceae

Hypericum spp.

llex glabra

Lyonia spp.

Lyonia ligustrina

Myrica cerifera

Quercus chapmanii

Q. myrtifolia

Q. virginiana

geminata

Serenoa repens

var.

Vaccinium

myrsinites
Ximenia americana

- 0. i0

leaves 6.59

stems 0.39

-- a

leaves

stems
leaves 6.11

stems 3.11

stems

leaves

stems

leaves 2.80
stems 1.86

leaves 18.74

stems 7.82
trunks

leaves 17.19

stems 3.
leaves 12.

stems 0.

rhizomes( 441.

-- 0.

22

91

16

14)b

54

Misc. Herbs

Standing Dead-

Saw Palmetto

Standing Dead-Woody - 48.57

Litter - 175.72

Total-live-leaves 66.33
Total-live-stems 38.45

Total live excluding 104.78

saw palmetto rhizomes
Total live 545.92

Total standing dead 50.17

Total standing dead 225.89
and litter

Total above ground 771.81

Total above ground 330.67

exluding saw palmetto rhlzomes

1.41 9.04 -

(0.18)b -

(O.Ol)b -

-- -- a

O.88 - -

1.09 - -
0.11 - -

4.29 28.03 10.34

0.24 7.86 44.30

_ _ (9.65)b

O.25 O.58 -

0.03 0.34 -
- 28.80 1.82

- 24.76 7.99
4.25 29.60 24.48

1.74 94.67 101.66

- - 45.16

23.43 14.82 I1.78

5.86 55.77 34.39

3.94 39.43 0.66

16.44 45.01 4.25

(764.32) b 842.30 (58.03)_
0.49 2.16 (1.58) °

leaves 1.35 - - -

stems 21.89 - - -

- - (0.30) b 9.62 -
- 1.60 17.44 115.12 5.94

6.58 15.88 51.97
343.71 597.26 163.?0

40.51 162.08 50.66
24.43 228.41 247.40

64.94 390.49 298.06

829.26 1232.79 356.09

24.02 131.00 57.91

367.73 728.26 221.61

1196.99 1961.05 577.70

432.67 1118.75 519.67

ainsufficient sample for analysis
bestimated from other data
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Table 23.

P_

Chemical _teristics of soils in the scrub stands.

_DRIZ0N

STAND 3 STAND 2
2 years 4 years

0-15era15-30era 0-15cm 15-30cm
N-12 N,,12 N=I2 N,,12

STAND 1
8 years

0-15era15-30cm
N,.12 N-12

STAND 4

25 years
0-15cm 15-30cm
N=I2 N=I2

pa

Cunductivlty
(u_o61em)

Organic matter
(_)

Available phceDhorus
(m&n_)

Total K Jeldabl
nitrogen (m_/kg)

Exchan&_able nitrate-
nlt_en (mg/kg)

Exchangeable mm, m_a
nitrogen (m_n_)

Cation exchan_
capacity (meg/100 g)

Ex_eable aZ_mnum
(mg/kg)

Available copper
(mg/kg)

Available iron
(mgn_)

Available mar6anese

Available zinc

(m&n_)

Exchan_le calcium
(_)

EXchangeable magnesium

Exc/mnseable potassium

Exchangeable sodium
(mmn_)

][ 4.46 4.69
SD (0.36)(0.29)

_[ 36.8 22.8
SD (10.3) (5.0)

Y 1.8 1.3

SD (0.7) (1.5)

Y 0.90 0.20
SD (0.90) (0.24)

201.16 83.67
SD (86.51)(45.78)

0.64 0.45
SD (0.48) (0.09)

Y 6.31 1.56
SD (7.79) (0.39)

0.27 o.19
_D (0.30) (0.13)

_[ 7.10 8.73
SD (5.30)(9.06)

Y 0.07 0.06
(0.03) (0.02)

Y 21.35 9.79
SD (12.58) (6.95)

Y 0.85 0.15
SD (0.58) (0.16)

O.312 O.099

SD (0.159)(0.066)

54.73 25.90
SD (_'4.86)(n.75)

12.21 3.86
SD (7.'#7) (2.04)

18.55 10.13
SD (7.Z2)(4.Z2)

16.57 12.51

(4,01) (1.60)

3.87 4.11 4.19 4.54
(0.19) (0.16)" (0.74) (0.20)

95.1 42.7 67.9 23.5
(36.5) (17.7) (15.6) (8.2)

8.8 3.2 3.6 0.6

(5.5) (3.5) (1.8) (0.5)

i0.01 2.55 3.17 0.90

(7.3o) (1.68) (2.11) (1.12)

1271.42 260.58 449.28 65.26
(796.98)(165.55) (212.80)(19.61)

0.70 0.53 0.71 0.75
(0.19) (0.ii) (0.25) (0.33)

24.26 5. II I0.23 2.50
(22.02) (2.65) (3.86) (0.96)

4.30 0.49 0.45 0.21
(5.85) (0.54) (0.34) (0.25)

8.52 6.9_ 6.83 2.77
(7.05) (5.02) (5.17) (5.31)

0.13 0.09 0.12 0.10
(0.04) (0.04) (0.02) (0.05)

36.39 11.69 16.22 9.45
(25.00) (11.38) (10.39)(15.44)

i. 3O 0.16 1.66 0.17
(1.08) (0.13) (2.54) (0.20)

0.734 0.152 0.622 0.193
(0.440) (0.093) (0.438)(0.214)

190.68 50.98 111.35 21.63
.(99.76) (24.28) (133.05)(11.19)

88.0o 24.41 31.55 4.39
(70.70) (17.60) (23.51) (2.73)

61.62 19.63 31.82 10.05
(43.44) (11.18) (13.70) (7.20)

39.28 21.21 2o.16 13.00

(21.36) (I0.14) (4.16) (3.20)

4.17 4.41
(0.33) (0.27)

54.9 24.6
(13.6) (5.5)

3.3 1.2
(1.3) (0.7)

i.77 0.30

(1.22) (0.32)

290.51 92.04
(92.88)(36.27)

O.52 0.49
(o.11)(0.07)

i0.13 2.18
(7.89) (o.94)

o.31 o.21
(0.16) (0.09)

9.27 7.82
(7.82) (5.87)

0.09 0.07
(0.03) (0.05)

28.45 13.05
(19.o0) (7.62)

0.83 0.16
(0.30) (0.09)

0.510 0.145
(o.195) (o.o69)

55.08 22.37
(11.92) (5.35)

12.97 3.52
(4.39) (1.30)

29.78 8.20
(12.81) (2.72)

2O. 46 12.48

(5.08) (1.41)
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Table 24. Chemical characteristics of inland scrub soils on
Merritt Island sampled in 1976 and 1977 (modified from
Madsen 1980)I.

Parameter X SD N

pH 4.1 0.13 14

Sodium 33 8.9 14
(mg/kg)

Potassium 9.3 1.6 14
(mg/kg)

Calcium 104 18.3 14
(mg/kg)

Magnesium 16.8 4.6 14
(mg/kg)

Phosphorus 0.86 1.O0 14
(mg/kg)

Nitrate-nitrogen 2.3 1.3 14
(mg/kg)

Ammonia-nitrogen 0.75 1.07 14

(mg/kg)

Total KJeldahl 190 60 14

nitrogen (mg/kg)

Organic matter 1.9 1.2 14
(_)

Aluminum 20.3 20.7 14
(mg/kg)

Ion exchange 1.5 0.7 14

capacity (meg/lO0_)

1Data are from two stands of oak scrub vegetation at inland sites

on KSC on Pomello soil. Each site was sampled in July 1976,
December 1976, and March 1977.
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Table 25. Analysis of variance of the 0-15 cm layer of soil
between the four scrub stands.

Parameter

pH

Conductivity

Organic matter

Cation exchange
capacity

Phosphorus

Total KJeldahl
nitrogen

Nitrate-nltrogen

Ammonia-nitrogen

Aluminum

Copper

Iron

Manganese

Zinc

Calcium

Magnesium

Potassium

Sodium

Significance
Level of
ANOVA
.025

<.0001

<.0001

.0o3

<.0001

<.0001

N.S.

.OO6

N.S.

.001

.039

N.S.

.024

.0006

<.0001

.0005

< .O001

Pairs of Stands Significantly
Different (p<.05) in Duncan

Multiple Range Tests
3&2

3&4, 3&l, 3&2, 4&2, l&2

3&2, 4&2, l&2

3&2, 4&2, l&2

3&2, 4&2, l&2

3&2, 4&2, l&2

3&2, 4&2, l&2

3&l, 4&l, 3&2, 4&2

l&2

3&l, 3&2

3&2, 4&2, l&2

3&2, 4&2, l&2

3&2, 4&2, l&2

3&2 a 4&2 a l&2
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Table 26. Analysis of variance of the 15-30 cm layer of soll
between the four scrub stands.

Parameter

pH

Conductivity

Organic matter

Cation exchange

capacity

Phosphorus

Total KJeldahl
nitrogen

Nitrate-nltrogen

Ammonia-nltrogen

Aluminum

Copper

Iron

Manganese

Zinc

Calcium

Magnesium

Potassium

Sodium

Significance
Level of

ANOVA

<.0001

<.0001

.014

N.S.

< .0001

<.0001

.001

< .0001

N.S.

N.S.

N.S.

N.S.

N.S.

<.0001

<.0001

.001

.O0O4

Pairs of Stands Significantly
Different (p<.05) in Duncan

Multiple Range Tests

2&4, 2&l, 2&3, 4&3

362, 162, 462

162, 462, 362

362, 462, l&2

162, 3&2, 4&2

361, 461, 261

362, 462, 162

162, 462, 3&2

462, 362, 162

462, 362, 162

4&2, 362m 162
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indicated that, in many cases, Stand 2 differed from the other

stands. As shown earlier, Stand 2 had a water table closer to

the surface than the other stands and contained some plots with

differing soil types. Wetter soils are likely to accumulate more

organic matter and therefore have greater cation exchange

capacity and differ in other properties from better drained
soils. In order to separate out effects that may be related to

soil drainage from those associated with fire, the soil data were

analyzed excluding Stand 2.

Multivariate analysis of variance was not significant for

the three stands for the 0 to 15 cm layer or for the 15 to 30 cm

layer based on soil characteristics. Since multivariate
differences were not significant, univariate (one way analysis of

variance) results must be viewed with caution. However, for the

0 to 15 cm layer conductivity, organic matter, phosphorus, total

KJeldahl nitrogen, copper, zinc, magnesium, and potassium
differed between the three stands (Table 27). For the 15 to 30

cm layer, only pH, phosphorus, nitrate-nitrogen and ammonia-
nitrogen differed between the three stands (Table 28). For both

soll layers, range tests indicated that Stand 3 (the most

recently burned) differed from one or both of the other stands

(Table 27, 28) suggesting that some fire effects might be
involved.

In order to examine these differences further, each soil

parameter was examined. Correlations between soil variables were

calculated and are given in Tables 29, 30, 31, and 32. In the 0

to 15 cm layer of the four stands, there were strong correlations

between organic matter, cation exchange capacity, total KJeldahl
nitrogen, and phosphorus (Table 29). Magnesium, potassium, and

sodium were also strongly correlated to each other. Similar,

though in some cases weaker, correlations existed between these

variables for the 15 to 30 cm layer for the four stands (Table

30). When Stand 2 was excluded from consideration, there were

still significant relationships between organic matter, cation

exchange capacity, total KJeldahl nitrogen, ammonia-nitrogen, and

phosphorus in the 0 to 15 cm layer (Table 31). In the 15 to 30

cm layer, however, the exclusion of Stand 2 eliminated that set
of relationships (Table 32).

pH in the most recently burned stand was elevated in both
the 0 to 15 and 15 to 30 cm layers (Figure 26) although these

differences were not all significant (Tables 25 to 28). Stand 2

had lower pH, probably due to the greater amount of organic

matter in the soil of Stand 2 and the negative correlation

between pH and organic matter (Table 29).

Conductivity was lower in the 0 to 15 cm layer of the most

recently burned stand (Figure 27) than in the other stands.

Stand 2 had higher conductivity in both the 0 to 15 and 15 to 30

7O



Table 27. Analysis of variance of the 0-15 cm layer of soll
between the three scrub stands, stand 2 excluded.

Parameter

pH

Conductivity

Organic matter

Cation exchange

capacity

Phosphorus

Total KJeldahl

nitrogen

Nitrate-nitrogen

Ammonla-nltrogen

Aluminum

Copper

Iron

Manganese

Zinc

Calcium

Magnesium

Potassium

Sodium

Significance
Level of

ANOVA

N.S.

.0o08

.0047

N.S.

.O029

.0006

N.S.

N.S.

N.S.

.002

N.S.

N.S.

.0423

N.S.

.0034

.0177

N,S,

Pairs of Stands Significantly
Different (p<.05) in Duncan

Multiple Range Tests

l&3, 4&3

l&3, 4&3

oD_

l&3, l&4

l&3, l&4

l&3, l&4

l&3

l&3, l&4

l&3, 4&3
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Table 28. Analysis of variance of the 15-30 cm layer of soil
between the three scrub stands, stand 2 excluded.

Parameter

pH

Conductivity

Organic matter

Cation exchange

capacity

Phosphorus

Total KJeldahl

nitrogen

Nitrate-nltrogen

Ammonia-nitrogen

Aluminum

Copper

Iron

Manganese

Zinc

Calcium

Magnesium

Potassium

Sodium

Significance
Level of

ANOVA

.0398

N.S.

N.S.

N.S.

Pairs of Stands Significantly

Different (p<.05) in Duncan

Multiple Range Tests
3&4

.O368

N.S.

.0016

.0254

N.S.

N.S.

N.S.

N.S.

N.S.

N.S.

N.S.

N.S.

N.S.

l&3, l&4

l&3, l&4

l&3
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cm layers. When Stand 2 was excluded, differences remained
between Stand 3 (the most recently burned) and the others in the
0 to 15 cm layer but not in the 15 to 30 cm layer (Table 27, 28).

Stand 2 had higher levels of organic matter in both the 0 to
15 and 15 to 30 cm layers (Figure 28). When Stand 2 was
eliminated, differences remained in the upper but not the lower
soil layer (Tables 27, 28). The most recently burned stand was
lower in organic matter in the 0 to 15 cm layer than the older
stands.

Cation exchange capacity was higher in Stand 2 than in the
other stands (Figure 29) probably due to the greater amount of

organic matter; organic matter and cation exchange capacity were
highly correlated in these soils (Table 29).

Phosphorus was elevated in Stand 2 relative to the others

(Figure 30). Phosphorus was highly correlated to organic matter
(Table 29). When Stand 2 was excluded, differences between some

stands remained (Tables 27, 28) but these were not clearly
related to fire.

Total KJeldahl nitrogen was higher in Stand 2 than in the

other stands (Figure 31). TKN was highly correlated to organic

matter (Tables 29, 30). The most recently burned stand was lower

in TKN in the 0 to 15 cm layer than the next older stand when

Stand 2 was excluded (Table 27) which may be related to fire.

Ammonia-nitrogen was closely related to TKN and to organic
matter (Table 29). It was elevated in Stand 2 relative to the

other stands (Figure 32). The most recently burned stand was

lower in ammonia-nitrogen in the 15 to 30 cm layer but not in the

0 to 15 cm layer than the next oldest stand when Stand 2 was
excluded (Table 28).

Nitrate-nitrogen, in contrast, showed no differences between

stands in the 0 to 15 cm layer (Figure 33, Table 25). There were

some differences between stands in the 15 to 30 cm layer but they
did not appear related to time since fire (Figure 33, Table 28).

Calcium was higher in Stand 2 than in the other stands

(Figure 34). Differences between stands were not significant

when Stand 2 was excluded (Tables 2T, 28). Magnesium was

similar, being elevated in Stand 2 (Figure 35). The surface

layer of Stand 1 (8 years since fire) differed from the other two

stands (Table 27) but this difference did not appear related to

time since burning.

Potassium (Figure 36) and sodium (Figure 37) were also

elevated in Stand 2 compared to the other stands. No significant
differences remained between stands for sodium when Stand 2 was

excluded (Tables 27, 28); however, the upper layer of the most

recently burned stand was lower in potassium than the other
stands (Table 27).

79



14.

ORGANIC MATTER
A. 0-15 cm

12

I.d

X
6

0
emn

Z

0 2

0

t +
0

I I I I I

5 10 15 20 25

AGE (years)
3O

7

B. 15-,30 cm

8

A

n_
W

3
0
Z

O 1

Figure 28.

+
+

0 I I I I I
0 5 10 15 20 25 30

AGE (yearn)

Organic matter of soils in the scrub stands.

80



i

5

CEC
A. 0-15 cm

|
t I J

10 15 20 25

AGE (yearn)
30

1.0

B. 15-.30 cm

0.8
A
O)

o
o
,,-- 0.8 -

O"
Q
E

v 0.4 "

(.,1
L,J
O O.2

0.0 I , I , ,
0 5 10 15 20 25

AGE (years)

Figure 29. Cation exchange capacity (CEC) of soils in the scrub stands.

81



PHOSPHORUS
A. 0-15 cm

14.

12

10

8
o

2

0 I I I I I
0 5 10 15 20 25

AGE (years)
3O

5

B. 15-50 cm

4

.._D3

a,,

i
0 L i 1 t

0 5 10 15 20

AGE (yoanm)

25 3O

Figure 30. Available phosphorus (P) in soils of the scrub stands.

82



TKN
A. 0-15 cm

2OOO

1800

1800

A 1400

1200

,ooo
V

8OO

I-,

4OO

2OO

0
0

m

I I I I I
5 10 15 20 25

AGE (years)
3O

5OO

B. 15-.30 cm

4O0

A
O)

,a¢
_300
O)
E

V

200
Z

I-,

100

0
0

Figure 31.

t , i I I

5 10 15 20 25

AGE (y,am)

Total Kjeldahl nitrogen (TKN) of soils in the scrub stands.

3O

83



40

AMMONIA
A. 0-15 cm

35

_30
D

_25
D
E

v20

z 15
I

:_ I0
z

5

0 I
0 5

I I I I

10 15 20 25

AGE (years)
3O

10

B. 15-30 cm

g

8

A

z 4
I

3

2Z

1

0 B I m I I I
0 5 10 15 20 25 30

AGE (years)

Figure 32. Exchangeable _a-nitrogen (NH3-N) of soils in the scrub stands.

84



NITRATE
A. 0-15 cm

13)

Z
I 0.4
IQ

0
z

0.2-

NN
----- 0

m

!

, I I I, I I

5 10 15 2D 25 30
AGE (years)

1.2

B. 15-30 cm

1.0

A

oJ!

Z

0.2

0,0 I I, I I I

0 5 10 15 20 25 30
AGE (yearT)

Figure 33. Exchangeable nitrate-nitrogen (NO3-N) of soils in the scrub stands.

85



275

25O

225

2OO

a 175

a

11111
o

¢_ 75

25

o

{

0

CALCIUM
A. 0-15 cm

I ! I I I

5 10 15 20 25

AGE (yoars)
3O

O

E°

V

Figure 34.

B. 15-30 cm

IO0

90

8O

70

8O

5O

4O

3O

2O

10-

0 I I I I I
0 5 10 15 20 25

AGE (yoam)

Exchangeable calciun (Ca) of soils in the scrub stands.

30

86



140

MAGNESIUM
A. 0-15 cm

120

100-
/-%
o)

o)

,_E 8o

I

20 _;
0

0

|
I I I I I

5 10 15 20 25

AQE(years)
3O

4O

B. 15-,30 cm

35

3O

A

15-

10

5

Figure 35.

0 I I I l I

0 5 10 15 20 25

AGE (yoar_)

Exchangeable magnesian (Mg) of soils in the scrub stands.

87



7O
A

mD 50
E
v 40

v 3O

2O

m

m

m

m

m

10-

0
0

POTASSIUM
A. 0-15cm

I I I I I

5 10 15 20 25

AGE (yearn)
3O

4O

35

3O

D20
E

v
15

v
10

Figure 36.

B. 15-,50 cm

m

m5

0 I I ,, I J
0 5 10 15 20 25

AGE (yoars)

Exchangeable potassium (K) of soils in the scrub stands.

3O

88



55

5O

45

4O
A

_35

_5O

E25
V

2O
0

Z 15

I0

m

!

m

5-

0
0

SODIUM
A. 0-15 cm

I
5

I I I I
10 15 20 25

AGE (yoars)
3O

3O

B. 15-,30 cm

25

2O

V

o 10
Z

0 , , J L i
0 5 10 15 20 25

AGE (yoars)

Figure 37. Exchangeable sodium (Na) of soils in the scrub stands.

89



Aluminum (Figure 38) and manganese (Figure 39) did not
differ between stands (Tables 25, 26). Copper (Figure 40) and
iron (Figure 41) showed some differences between stands in the
0-15 cm layer (Tables 25, 27) but these differences were not
clearly related to time since fire. Zinc (Figure 42) was lower
in the 0 to 15 cm layer in the most recently burned stand
relative to two of the other stands (Tables 25, 27).

Nutrient Standing Crops in Biomass and Soils

Standing crops of nutrients and metals in soils of the scrub
stands are summarized in Table 33. For all parameters except
aluminum and copper, standing crops were greater in the 0 to 15
cm layer than in the 15 to 30 cm layer; aluminum and copper were
in approximately equal amounts in both layers.

Total KJeldahl nitrogen standing crops in living and dead
biomass equalled or exceeded that in soil (0-30 cm) in three of
four scrub stands (Table 34, Figure 43). Stand 2 with greater
organic matter in the soil had a much greater standing crop of
nitrogen in the soil than the other stands and more in the soil
than in biomass.

Standing crops of phosphorus in living and dead biomass
exceeded that in soil (0-30 cm) for all stands (Table 35, Figure
44). Stand 2 had much more soil phosphorus than the other stands
probably due to greater soll organic matter. Saw palmetto
rhlzomes were a major pool in three of four stands where they had
high biomass.

Calcium standing crops in living and dead biomass exceeded
that in soil (0-30 cm) for all stands (Table 36, Figure 45).
Stand 2 had greater amounts of calcium in the soil than the other
stands. Palmetto rhlzomes were a major pool in three of the four
stands.

Magnesium standing crops in living and dead biomass exceeded
that in soil (0-30 cm) for two stands while soil was the greater
pool in the other two stands (Table 37, Figure 46). Stand 2 had
a much greater soil magnesium standing crop than the other
stands.

Potassium standing crops in living and dead biomass exceeded

that in soil (0-30 cm) for all stands (Table 38, Figure 47). Saw

palmetto rhizomes were a particularly important pool for

potassium. In the oldest stand which had much less saw palmetto

rhizome biomass, soil and biomass pools of potassium were nearly
equal.

Standing crops of sodium in living and dead biomass exceeded
that in soll (0-30 cm) for three of the four scrub stands (Table

39, Figure 48). Saw palmetto rhlzomes were the major biomass

9O



ALUMINUM
A. 0-15 cm

14.

12

i

A 10 -
D

I

E "
_ e -

n

0
0

I I I I I

5 10 15 20 25

AGE (yoam)

3o

B. 15-,50 cm

14
!

12 •

10

,ad I
!1 •

D
E

v II '

m

4

2-

0
0

Figure 38.

D

1

I I I I I

5 10 15 20 25

AGE(y,on,)
Exchangeable al_ninum (AI) of soils in the scrub stands.

91



4.O

MANGANESE
A. 0-15 cm

3.5

3.0

V

1.5

O.5

0.0 I I I I I
0 5 10 15 20 25

AQE(yoo, )
3O

B. 15-,30 cm

.5O

.45

.4O

.35
A
OD

V
.20

.10

.O5

I;I 13

0.00 i i i i i
0 5 10 15 20 25

AGE (years)

Figure 39. Available manganese (Mn) of soils in the scrub stands.

30

92



.20

.18

.18

.14
A

) .10

v .08

(_ .oe
.O4

.02

0.00

COPPER
A. 0-15 cm

m

m

I I I I

0 5 10 15 20

AGE (years)

J

25 3O

.le

B. 15-30 cm

.14.

.12

 ,.oe
V

(_ .oe
.O4.

.O2

0.00

Figure 40.

I I I I l

0 5 10 15 20 25

AGE (years)

Available copper (Cu) of soils in the scrub stands.

3O

93



55

IRON
A. 0-15 cm

5O

45

4O
A
a35

o)
E2s

V

2O

10

5

0

T

o

0

12

I I I I I
5 10 15 20 25

AGE (years)
30

2O

B. 15-,30 cm

18

16

14
A
D

.x 12

Figure 41.

T

O

[]

5
I I ,_ I

10 15 20 25

AGE (yoars)

Available iron (Fe) of soils in the scrub stands.

94



ZINC
A. 0-15 cm

==

v

I=
N

.80

.6O

.4O

,2O

0._ l i I I I
0 5 10 15 _ 25

AGE (year=)

.4O

B. 15-30 cm

OD
,.X

O)
E

v

I=
N

.35

.so i

.25

"20-

.15 -

.10 -

.05 -

0.00
0

I I I I I
5 10 15 20 25

AGE (years)

Figure 42. Available zinc (Zn) of soils in the scrub stands.

95



Table 33. Standing crops of nutrients and metals (g/m2/horizon) in
soils of the scrub stands.

Parameter

Phosphorus

Total KJeldahl
nitrogen

Nitrate-nltrogen

Ammonia-nltrogen

Calcium

Magnesium

Potassium

Sodium

Aluminum

Copper

Iron

Manganese

Zinc

Organic matter

Horizon Stand 3 Stand 2 Stand 1 Stand 4

2 years 4 years 8 years 25 years

0-15cm 0.162 1.802 0.571 0.319

15-30cm 0.045 0.574 0.203 0.068

0-15cm 36.209 228.886 80.870 52.292
15-30cm 18.826 58.631 14.684 20.709

0-15cm 0.115 0.126 0.128 0.094

15-30cm 0.081 0.119 0.169 0.113

0-15cm 1.136 4.367 1.841 1.823
15-30cm 0.351 1.150 0.563 0.491

0-15cm 9.851 34.322 20.043 9.914
15-30cm 5.828 11.471 4.867 5.033

0-15cm 2.198 15.840 5.679 2.335

15-30cm 0.869 5.492 0.988 0.792

0-15cm 3.339 11.092 5.728 5.360

15-30cm 2.279 4.417 2.261 1.845

0-15cm 2.983 7.070 3.629 3.683
15-30cm 2.815 4.772 2.925 2.808

O-15cm 1.278 1.534 1.229 1.669
15-30cm 1.964 1.557 0.623 1.760

0-15cm 0.013 0.023 0.022 0.016

15-30cm 0.014 0.020 0.023 0.016

O-15cm 3.843 6.550 2.920 5.121
15-30cm 2.203 2.630 2.126 2.936

O-15cm 0.153 0.234 0.299 0.149
15-30cm 0.034 0.036 0.038 0.036

0-15cm 0.056 0.132 0.I12 0.092
15-30cm 0.022 0.034 0.043 0.033

0-15cm 3240 15840 6480 5940

15-30cm 2925 7200 1350 2700
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Table 34. Summ_ry of standing crops of total KJeldahl nitrogen (TKN)
(g/m _) in biomass and soil of scrub stands.

Category

Leaves and stems

Saw palmetto rhizomes

Total live

Litter and standing dead

Total above ground

Soil 0-15 cm

Soil 15-30 cm

Soil Total 0-30 cm

Stand 3 Stand 2 Stand 1 Stand 4
2 years 4 years 8 years 25 years

21.746 23.603 28.977 55.350

23.754 41.156 43.354 3.125

45.500 63.758 74.332 58.475

62.639 21.840 46.988 22.727

108.139 85.598 121.320 78.107

36.209 228.886 80.870 52.292

18.826 58.631 14.684 20.709

55.035 287.517 95.554 73.001
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Table 35. Summary of standing crops of phosphorus (P) (g/m 2) in
biomass and soil of the scrub stands.

Category

Leaves and stems

Saw palmetto rhlzomes

Total live

Litter and standing dead

Total above ground

Soil 0-15 cm

Soll 15-30 cm

Soil Total 0-30 cm

Stand 3 Stand 2 Stand 1 Stand 4

2 Fears 4 Fears 8 Fears 25 Fears

0.736 0.738 0.832 1.369

1.357 2.352 2.592 0.179

2.093 3.090 3.423 1.548

0.505 0.180 0.394 0.413

2.598 3.269 3.817 1.960

0.162 1.802 0.571 0.319

0.045 0.574 0.203 0.068

0.207 2.376 0.774 0.387
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Table 36. Summary of standing crops of calcium (Ca) (g/m 2) in
biomass and soil of the scrub stands.

Category

Leaves and stems

Saw palmetto rhizomes

Total llve

Litter and standing dead

Total above ground

Soil 0-15 cm

Soil 15-30 cm

Soil Total 0-30 cm

Stand 3 Stand 2 Stand I Stand 4

2 years 4 years 8 years 25 years

6.085 4.186 7.835 17.719

32.916 57.030 62.848 4.330

39.001 61.216 70.683 22.049

8.995 3.467 6.230 I1.647

47.995 64.683 76.913 33.696

9.851 34.322 20.043 9.914

5.828 11.471 4.867 5.033

15.679 45.793 24.910 14.947
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Table 37. Summary of standing crops of magnesium (Mg) (g/m 2) in
biomass and soil of the scrub stands.

Category

Leaves and stems

Saw palmetto rhizomes

Total live

Litter and standing dead

Total above ground

Soil 0-15 cm

Soil 15-30 cm

Soil Total 0-30 cm

Stand 3 Stand 2 Stand I Stand 4

2 years 4 years 8 years 25 years

1.435 1.526 2.530 2.772

2.138 3.704 4.082 0.281

3.573 5.230 6.612 3.054

1.540 1.020 2.134 1.698

5.113 6.250 8.746 4.752

2.198 15.840 5.679 5.360

0.869 5.492 0.988 1.845

3.067 21.332 6.667 7.205
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Table 38. Summary of standing crops of potassium (K) (g/m 2) in
biomass and soll of the scrub stands.

Category

Leaves and stems

Saw palmetto rhizomes

Total live

Litter and standing dead

Total above ground

Soil 0-15 cm

Soil 15-30 cm

Soll Total 0-30 cm

Stand 3 Stand 2 Stand 1 Stand 4
2 years 4 years 8 years 25 years

3.019 3.312 3.837 4.375

16.560 28.691 31.621 2.178

19.579 32.004 35.458 6.553

4.222 0.677 2.328 1.479

23.801 32.681 37.786 8.032

3.339 11.092 5.728 5.360

2.279 4.417 2.261 1.845

5.618 15.509 7.989 7.205
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Table 39. Summary of standing crops of sodium (Na) (g/m 2) in biomass
and soll of the scrub stands.

Category

Leaves and stems

Saw palmetto rhlzomes

Total llve

Litter and standing dead

Total above ground

Soil 0-15 cm

Soil 15-30 cm

Soil Total 0-30 cm

Stand 3 Stand 2 Stand 1 Stand 4

2 years 4 years 8 years 25 years

0.510 1.218 1.012 1.037

8.959 15.522 17.105 1.179

9.468 16.740 18.117 2.215

0.604 0.414 0.651 0.563

10.072 17.153 18.769 2.777

2.983 7.070 3.629 3.683

2.815 4.772 2.925 2.808

5.798 11.842 6.554 6.491
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pool. Stand 4 with relatively little saw palmetto rhizome

blomass had a greater pool of sodium in the soll than in biomass.

Aluminum was different from the other elements in that its

standing crop in soll was much greater than that in living and

dead biomass (Table 40, Figure 49).

DISCUSSION

This study has provided considerable information pertinent
to understanding the dynamics of oak scrub on Merritt Island.

Such information is applicable to determining impacts of KSC

operations and land use management strategies (e.g., prescribed

fire) in comparison to expected natural changes or

characteristics of the extensive oak scrub type. The information
discussed in more detail below includes:

i. Characterization of the community compared to others

throughout Florida in terms of species composition and structure.

2. Response of the community to fire and the effects of

fire on stand composition and structure.

3. Effects of fire-caused changes on habitat quality for
certain scrub endemic animals.

4. The dynamics of biomass changes in relation to litter

and fuel accumulation as compared to different aged stands and to
other similar community types.

5. The dynamics of nutrient budgets in relation to soils

and biomass pools in different aged stands and in comparison to
other community types.

Community Composition

Scrub stands sampled in this study should be classified as

oak scrub as used by the Florida Natural Areas Inventory (Duever
1983a). This term is more descriptive and accurate than terms

previously applied such as "scrubby flatwoods" since oak scrub
lacks any pine canopy or "coastal scrub" since oak scrub occurs

inland on Merritt Island well out of the salt spray zone. Along

the soil moisture-depth to water table gradient, oak scrub grades
into saw palmetto scrub. Saw palmetto scrub is a better term

than previous terms such as "pineless flatwoods." Currently,
data are not available to determine whether saw palmetto scrub

historically had a pine overstory or whether it might develop one
in the future, therefore, saw palmetto scrub should be

differentiated from pine flatwoods.
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Table 40. Summary of standing crops of aluminum (A1) (g/m 2) in
biomass and soil of the scrub stands.

Category

Leaves and stems

Saw palmetto rhizomes

Total llve

Litter and standing dead

Total above ground

Soil 0-15 cm

Soil 15-30 cm

Soil Total 0-30 cm

Stand 3 Stand 2 Stand 1 Stand 4
2 years 4 years 8 years 25 years

0.0105 0.0065 0.0391 0.0298

0.0441 0.0764 0.0842 0.0058

0.0545 0.0829 0.1233 0.0356

0.0226 0.0368 0.0729 0.0221

0.0772 0.I197 0.1961 0.0578

1.2780 1.5340 1.2290 1.6690

1.9640 1.5570 0.6230 1.7600

3.2420 3.0910 1.8520 3.4290
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Some unique features of oak scrub vegetation on Merritt
Island should be recognized. Few open areas occur in undisturbed
oak scrub vegetation on Merritt Island unlike the openings
described in classic sand pine scrub (Webber 1935, Mulvania
1931). Many of the endemic species of scrub plants occurring on
the Lake Wales Ridge (Abrahamson et al. 1984) do not occur in oak
scrub on Merritt Island. Even though rosemary and scrub hickory
occur on Cape Canaveral and in the vicinity of False Cape, they
are absent from the inland stands sampled in this study.
Compared to "scrubby flatwoods" at Archbold Biological Station on
Lake Wales Ridge, oak scrub on Merritt Island lacks scrub
palmetto (Sabal etonia) and myrtle oak replaces Quercus inopina.

Ground cover by Cladonia lichens or Sela_inella is less common in
oak scrub on Merritt Island than that on Lake Wales Ridge

(Abrahamson et al. 1984).

The post-fire response of oak scrub vegetation on Merritt

Island is similar to that reported by Abrahamson (1984a,b) for

"scrubby flatwoods" on the Lake Wales Ridge. Oak scrub is

dominated by sprouting species that recover after fire. Little

change in species composition or species richness occurs. Cover

in the ground layer (<0.5 m) recovers fairly rapidly. Open
spaces do not persist for long and therefore there is little

opportunity for invasion by new species. Herbaceous species are

not a major component of oak scrub on Merritt Island and sho_ no

growth or invasion response that persists to two years post-fire.

Scrub vegetation is thus much different from pine-wiregrass

savannas where frequent fire maintains high species diversity
(Walker and Peet 1983). Fire is also thought to maintain species

diversity in many other shrublands (Christensen 1985, Gill and

Groves 1981, Kruger 1983).

Community beta diversity in Merritt Island oak scrub did not

change with fire indicating that the rate of turnover of species

along the gradient is unchanged. Beta diversity values for scrub
are similar to those reported for mallee (semiarid shrub

Eucal_ptus) communities in Australia (Whittaker et al. 1979b)

and mesquite grassland in Texas (Whittaker et al. 1979a). Longer

vegetation gradients such as those in cove forests of the
Cumberland Plateau in Tennessee (Schmalzer 1982) have

substantially greater beta diversities.

Similar responses to fire occur in the Pine Barrens of New

Jersey (Boerner 1981, Buchholz 1982), however; more of the

species in the pine barrens are fire resistant, surviving fire.

Sprouting species are also of importance in California chaparral

(Hanes 1971), pocosins in the Carolinas (Christensen et el.

1981), and other shrublands (Gill and Groves 1981, Kruger 1983).

Our findings concur with those of Abrahamson (1984a,b) in

that recovery after fire in oak scrub is not a successional

development in the classical sense since the species present

before the fire are those that come back immediately post-fire.
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Even the oldest scrub stand sampled here showed no invasion by
hammock species, only structural changes from continued height
and biomass growth. This agrees with the lack of successional
change in scrub con_nunities found by Givens et al. (1984), Veno
(1976), and Peroni and Abrahamson (1986).

Community Structure

Fire has substantial and long-lasting effects on community

structure. Unlike the patchy fires reported for "scrubby

flatwoods" at Archbold Biological Station, the fires which burned

Stands 2 and 3 on Merritt Island were essentially complete. Oak

scrub will not burn under all conditions; attempts to burn Stand

1 by aerial ignition in the winter of 1983 (a wet winter) failed

(P. Schmalzer pers. obs.). Total cover in the greater than 0.5 m

layer requires ca. 6 years to reach 100%; mean height also
requires 4 to 6 years to exceed I m. Initially, this rate of

recovery of canopy cover appears slower than that on Lake Wales

Ridge "scrubby flatwoods." However, Abrahamson (1984a, b) did
not consider cover in height classes and thus when he states that

"scrubby flatwoods" recovered its preburn coverage in two years
after fire it is without reference to height classes. Also, the
fire at Archbold burned about 30 to 60% of the vegetation along

transects while those on Merritt Island burned nearly 100%.

Rates of height growth for individual species (Abrahamson 1984a,

b) seem comparable between the two sites.

These structural changes have implications for the

suitability of this habitat for scrub endemic animals,

particularly Florida scrub Jay. Scrub Jays prefer oak-dominated
scrub about i to 3 m in height where open areas (sand or

vegetation <15 cm) occur (Breininger 1981, Cox 1984). At the
rates shown here for oak scrub on Merritt Island, 4 to 6 years

are required for scrub mean height to reach i m and height is
less than 3 m at 25 years although some individual oaks exceed

3 m at 25 years of age. Open areas are, however, uncommon in
undisturbed oak scrub and do not persist long after fire. A fire

rotation of three years or less if uniformly (and successfully)

applied would produce suboptimal habitat for scrub Jays but so

would complete fire suppression. A mosaic of burned areas

providing openings and more mature scrub providing height would

apparently be preferable to uniform treatment. Christensen
(1985) stated that it may be important to incorporate variability

into management strategies for shrublands in general.

Biomass

Live biomass (excluding saw _almetto rhizomes) in these
stands of oak scrub (970-2300 g/m ) is comparable to that (1050

g/m _) reported by Hough (1982) for the saw palmetto-gallberry

understory of slash pine forests. They are also in the same
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range (500-4000 g/m 2) as pocosins (Wilbur and Chrlstensen 19_3).

Chaparral is also similar with biomass ranging from 1440 g/m _ for

coastal sage scrub to 7624 g/m 2 for Ceanothus chaparral (Gray
1982) as are other shrublands (Rundel 19_3). The oak scrub

component of pine barrens vegetation has a biomass of about 500

g/m _ 2 to 3 years after wildfire_ however, the presence of a
pitch pine canopy (1000-2000 g/m _) makes the total blomass of

pine barrens communities greater (Boerner 1981).

Saw palmetto rhizomes accumulated considerable biomass
(220-3210 g/m _) in the stands studied. Hough (1982) reported a

mean of 560 g/m 2 for palmetto rhizomes in the saw palmetto-

gallberry understory of slash pine stands; three of four stands

studied here exceed that. Saw palmetto rhizomes are a unique

element of the scrub community. They are generally unaffected by

fire (Burton and Hughes 1961) forming a persisting element of

aboveground biomass. Functionally, these rhizomes appear to
combine elements of an aboveground stem with that of an

underground root system, a situation with some parallels in the

lignotubers of Eucalyptus species in the mallee scrub of

Australia and other Mediterranean type shrublands (Walter 1979,
James 1984). Christensen (1985) indicates that basal bud burls

or lignotubers are common in shrublands where periodic intense

fires occur and may account for a considerable portion of shrub

blomass. Belowground biomass data on scrub vegetation at

Archbold Biological Station suggests that it is equal or greater
than aboveground (Johnson et al. 1986).

Litter accumulation in oak scrub (440-1200 g/m 2) is less
than that reported (1860 g/m 2) for slash pine/saw palmetto-

gallberry vegetation (Hough 1982) perhaps because of no needle

fall from canopy trees. Pine barrens have more similar litter

standing crops with 530 g/m 2 one year post-fire to 1030 g/m 2 in a
control site (Boerner 1983). Chaparral also has generally

comparable standing crops of litter (620-2030 g/m2) (Gray 1982).

Litter production and decomposition in oak scrub appear to reach

equilibrium in about 8 years. McNab et al. (1978) report that

the forest floor loading of slash pine/palmetto stands increases

rapidly for 5 years post-flre and then decreases to equilibrium

at 20 years; lack of decay resistant pine litter accounts for the

more rapid equilibrium in oak scrub.

Standing dead biomass forms a conspiGuous element in Merritt

Island oak scrub communities (570-860 g/m2). In the 2 year old

stand, it was 89% of llve blomass and at 25 years age it was 25%

of llve biomass. Pine barrens have similar amounts of standing
dead material (530-750^g/m 2) after wildfire but much less in

unburned sites (30 g/m _) (Boerner 1981). Chaparral communities

accumulate considerable standing dead material (250-1140 g/m 2) in
20 year old stands (Gray 1982). Christensen (1985) states that

the dead-to-live ratio increases with the age since the last fire

in most shrub communities. In oak scrub the ratio of litter plus

standing dead to total llve was 48.8% in a two year old stand and
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66.0% in a 25 year old stand. However, this is due in part to

there being fewer saw palmetto rhizomes in the oldest stand

sampled.

Biomass Chemistry

Total KJeldahl nitrogen concentrations reported here in saw

palmetto leaves, stems, and rhizomes, gallberry leaves and stems,

standing dead material and litter are greater than those
reported by Hough (1982) for these components in the understory

of slash/longleaf pine stands. TKN concentrations are higher in

scrub oaks than those reported (0.5-1.0%) for oaks at Archbold

Biological Station (A. Johnson, pars. com.). Concentrations are

in the general range reported for chaparral and coastal sage
scrub species (Gray 1983) and various European ericads (Marrs

1978) but slightly higher than most shrub species in an oak-pine
forest (Woodwell et al. 1975).

Nitrogen standing crop in live biomass and palmetto rhizomes

are also greater than those in the understory of slash/longleaf

pine stands (Hough 1982) due to the higher concentrations found

here. The size of the nitrogen pool in litter (14.7 g/m 2) (Hough

1982) is generally similar. Chaparral has similar amounts of

nitrogen in live b_omass (41.7 g/mL), litter (20.5 g/mL), and
dead wood (6.3 g/m_); the pools in coastal sage scrub are less

(Gray 1983_. Rundel (i_83) reported above-ground nitrogen pRols
of 3.4 g/m _ to 41.1 g/m _ and litter pools of 2.5 to 23.0 g/m _ for

a variety of shrublands.

Total phosphorus concentrations reported here in saw

palmetto, gallberry, litter, and standing dead material are very
similar to those reported by Hough (1982). Phosphorus

concentrations in oaks are similar to those (<0.1%) at Archbold

Biological Station (A. Johnson, pars. comm.). Concentrations are

in the same range as chaparral and coastal sage scrub species
(Gray 1983), European ericads (Marts 1978), and oak-pine species
(Woodwell et al. 1975).

Phosphorus pools in live biomass in scrub are similar to

those in the understory of slash/longleaf pine stands (Hough

1982); the standing dead plus litter pool is less than the forest

floor of those pine stands (1.06 g/m 2) while scrub has generally

greater amounts in saw palmetto rhizomes. Similar amounts of

phosphorus occur in live biomass (2.89 g/m2), litter (0.60 g/m2),
and dead wood (0.46 g/m 2) in chaparral (Gray 1983). For a

variety of shrublands, Rundel (1983) reported aboveground
phosphorus pools of 0.14 g/m 2 to 2.9 g/m c and litter pools of 0. i

g/m z to 2.2 g/m 2.

Calcium concentrations reported here are similar to those

reported by Vickers et al. (1975) (Table 8). Considerable

seasonal variation occurred in calcium concentration in the two
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periods (August and April) sampled by Vickers et al. Samples in
this study were taken at a third time (January). Calcium
concentrations are generally similar to those of Hough (1982).
Scrub oaks at Archbold Biological Station have similar
concentrations in leaves (0.5-1.0%) but slightly higher
concentrations in stems (1.0-1.5%) (A. Johnson, pers. comm.).
Concentrations are in the range of chaparral and sage scrub
species (Gray 1983), of the erlcaceous shrubs in an oak-plne
forest (Woodwell et al. 1975), and those of European erlcads
(Marrs 1978).

Calcium pools in oak scrub are similar to those in the
understory of slash/longleaf pine stands (Hough 1982). Chaparral
has similar amounts of calcium in live biomass (33.81 g/m_),
litter (26.10 g/m2), and dead wood (5.58 g/m 2) (Gray 1983).

Magnesium concentrations found here are similar to those of
Vickers et al. (1975) (Table 8). These concentrations are also
similar to those Hough (1982) reported for these species in
slash/longleaf pine stands. Scrub oaks at KSC and Archbold
Biological Station have similar concentrations (0.1-0.2%) (A.
Johnson, pers. comm.). Magnesium concentrations are in the same
range as chaparral and coastal sage scrub species (Gray 1983),
European ericads (Marrs 1978), and ericaceous shrubs in an
oak-pine forest (Woodwell et al. 1975).

Magnesium pools in oak scrub in palmetto rhizomes are
greater then those reported by Hough (1982) while litter and live
biomass pools are similar. Chaparr_l has a similar amount of
magnesium in live biomass (4.24 g/m L) but more litter (6.70 g/m 2)
(Gray 1983).

Sodium concentrations found here are similar or less than
those of Vickers et al. (1975) (Table 8). Sodium concentrations
are in the same range as European ericads (Marrs 1978) and
ericaceous shrubs in oak-pine forest (Woodwell et al. 1975).

Sodium pools in oak scrub are similar to those of the
und_rstory of slash/longlegf pine stands for live biomass (1.32
g/m _) and litter (0.26 g/m_) (Hough 1982), but palmetto rhiz_mes
are a larger pool in scrub than in the pine stands (1.36 g/m_).

Potassium concentrations are similar to those found by
Vickers et al. (1975) (Table 8) and generally similar to those
reported by Hough (1982). Scrub oaks at Archbold Biological
Station have similar (<0.5%) concentrations (A. Johnson, pets.
comm.). Concentrations are in the same range as chaparral
species (Gray 1983), European ericads (Marts 1978), and oak-plne
species (Woodwell et al. 1975).

Oak scrub has similar amounts of potassium in live biomass,
palmetto rhizomes, and litter when compared to the understory of
slash/longleaf pine stands (Hough 1982). Chaparral vegetation
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has comparable or larger pools of^potassium in live bioma_s
(16.47 g/m_), dead wood (2.68 g/m_), and litter (4.70 g/m _) (Gray
1983).

Aluminum concentrations are generally similar to those found

by Vickers et al. (1975). Few studies report aluminum

concentrations in vegetation.

Hough (1982) reported larger pools of aluminum in litter
(1.42 g/m _) but similar amounts in live understory biomass (0.07

g/m 2) and palmetto rhizomes (0.05 g/m 2) in slash/longleaf pine

stands compared to the oak scrub studied here.

There are no apparent effects of fire on nutrient
concentrations in live biomass in the two year old stand. If

such changes occurred they did not persist. However, litter did

show elevated potassium, calcium, and phosphorous in the youngest

stand probably as the result of ash deposition from the fire.

Sodium was not increased; it is a more mobile ion and any

deposited in ash probably leached into the soil by two years

post-fire.

Soil Chemistry

Soil chemical properties in scrub are strongly influenced by

soil drainage. Wetter soils (water table closer to surface) have

higher amounts of organic matter and consequently higher cation

exchange capacity and nutrients. Compared to the effects of soil

drainage, the effects of fire that can be detected 2 years

post-burn are relatively minor. Greater effects of fire on these

soils might be detected if stands were sampled sooner after a
fire.

Soil pH is higher in the most recently burned stand.

Increase in soil pH is one of the most common effects of fire on
soil (Raison 1979, Wells et al. 1979, Rundel 1981, McKee 1982).

pH increase generally results from the deposition of basic

cations from ash and from the destruction of organic acids in the

soil. The decline in available zinc in the most recently burned

stand could result from the increased pH decreasing its

availability.

Organic matter is reduced in the most recent burn.

Reduction in organic matter in mineral soil can result directly

from soil heating (Wells et al. 1979) or from increases in

decomposition rates due to microclimate or nutrient availability

changes influencing microbial activity (Rundel 1981). The

decline in organic matter probably accounts for the decline in

TKN; since organic matter and TKN are closely related in these

soils. Abrahamson (1984a) detected only minor soil changes,

primarily an increase in calcium in the surface soil, after fire

in scrub at Archbold Biological Station.
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Nutrient Standing Crops in Biomass and Soils

The importance of nutrient cycling in determining soil
chemical properties is illustrated in that standing crops for
biologically important elements are higher in the 0 to 15 cm
layer than in the 15 to 30 cm layer. Aluminum which is not
important for plant growth and copper which is required in only
small amounts (Brady 1974) and more evenly distributed in the
soil.

Nutrient standing crops are concentrated in biomass rather
than soil to a high degree. For phosphorous, calcium, and

potassium, biomass pools exceed those in the soil for all

stands. Total KJeldahl nitrogen is primarily in biomass except
in one stand with a higher water table and more organic matter in

the soil. Biomass pools of sodium exceed those in the soil

except in one stand which has few saw palmetto rhizomes.

Magnesium pools in biomass are greater than soil pools in two
stands and less in the other two; soil pools are greater where

organic matter is high and where there are few saw palmetto

rhizomes. Only aluminum has consistently greater pools in soil
than biomass.

Belowground biomass was not measured in this study. Quercus

inopina clones in scrub at Archbold Biological Station allocated
about 70% of their biomass to belowground structures (Johnson et

al. 1986). If scrub oaks and other shrubs in scrub at KSC are

similar and have even half of their biomass below ground, then it

is likely that the biomass pools of most biologically important
elements in scrub exceed those in the mineral soil except perhaps

on wet sites.

Belowground biomass data are available for relatively few

shrub communities. Specht et al. (1958) found that roots in an

Australian heath had three times the aboveground biomass at 25

years post-fire. In California chaparral, Kummerow et al. (1977)

found less blomass belowground than above.

Nutrient Cycling Considerations

Are nutrient losses from the scrub system from fire

significant in terms of preventing or slowing regrowth of the

vegetation? Our data are not sufficient to answer the question
since it would be necessary to quantify belowground biomass and

nutrient pools, leaching and volatilization losses with fire, and

post-fire nutrient uptake to provide a complete answer. We can

compare nutrient deposition from precipitation (Table 41) to see

if it is important relative to biomass pools.

Nitrogen is the element most often lost in significant

quantities with fire. Nitrogen deposition in precipitation

(0.072 g/m2/yr, Table 41) is minor compared to the biomass
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Table 41. Deposition of nutrients in precipitation on Merritt Island. 1

Calcium Magnesium Sodium Potassium Ammonia- Nitrate-

(Ca) (Mg) (Na) (K) Nitrogen Nitrogen

(NH3-N) (NO3- _)
(mg/m2/yr) (mg/m2/yr) (mg/m2/yr) (mg/m2/yr) (mgYm2/yr) (mg/m_/yr)

1984 376.1 450.1 1779.2 96.5 58.5 33.5

1985 335.8 244.8 904.8 48.7 24.0 27.9

X 356.0 347.5 1342.0 72.6 41.3 30.7

SD 28.5 145.2 618.3 33.8 24.4 4.0

1Data are from a rain collector maintained at a central inland site on

Merritt Island as part of the National Atmospheric Deposition Program
(NADP) (Madsen et al. 1987).
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pools. Biological nitrogen fixation in scrub has not been
studied. Legumes are not common in these stands of oak scrub.
Nitrogen fixation is associated with wax myrtle (Myrica cerifa)

(Permar and Fisher 1983); however, the low percent cover of wax

myrtle in scrub (1-2%) suggests that nitrogen additions by it are

minor. Non-symbiotic nitrogen fixation must occur in scrub.
Stimulation of nitrogen fixation after fire has been reported for

loblolly pine (Pinus taeda) forests (Jorgensen and Wells 1971).

Whether this occurs in scrub is unknown. In saw palmetto stands

at Apollo Beach, NOB-N increased in surface soils over the year
following fire (Hinkle et al., unpublished); this may have been
due to increased mineralization.

Calcium deposition by precipitation (0.36 g/m2/yr, Table 41)

is small compared to total biomass pools. Calcium imputs are

more significant when compared to the amount of calcium in leaves
and stems; calcium in palmetto rhizomes is not affected by fire.

Since calcium is not volatilized in large amounts and is not as

mobile in the soil as other cations, precipitation may supply

enough to replace the losses from fire.

Magnesium in precipitation (0.35 g/m2/yr, Table 41) is

significant compared to biomass pools. Magnesium in leaf and
stem biomass (1.4-2.8 g/m 2, Table 37) could accumulate from 4 to

8 years of precipitation.

Potassium deposition by precipitation (.073 g/m2/yr, Table

41) is small compared to biomass pools. Potassium losses could

occur since it is generally more mobile in the soil than calcium

or magnesium. In contrast, precipitation deposition of sodium

(1.34 g/m_/yr) is relatively large compared to biomass pools and
losses of it could be replaced.

A biological process (nitrogen fixation) is required to

replace nitrogen lost in scrub fires. Nutrient uptake by plants

or other processes may be important in limiting the losses of
calcium and potassium (present in biomass in amounts large

relative to additions in precipitation) and phosphorous

(generally below detection limits in precipitation).

Fire Regimes and Long-term Considerations

Several properties of oak scrub place it among those systems
which could be considered vulnerable to nutrient losses from

fire. Oak scrub occurs on low nutrient soils and much of the

nutrient capital is sequestered in biomass rather than the

mineral soil; therefore, it qualifies as an oligotrophic system
(Boerner 1982). Furthermore, additions of several major

nutrients by precipitation are small relative to biomass pools

suggesting that efficient nutrient accumulation, retention, and

recycling are important to maintaining the stability of the

system (Raison 1979).
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Scrub species have evolved under regimes of low nutrient

soils and repeated fires (Abrahamson 1984a,b). These species

have characteristics that are considered adaptations to low

nutrient soils including evergreen and sclerophylous leaves
(Loveless 1961, 1962, Monk 1966) and other characteristics

particularly the dominance of sprouting species that are

considered adaptations to repeated fires (Keeley and Zedler 1978,
Malanson 1985). However, the same shrub species dominate the

understory of sand pine scrub which has a longer (ca. 40 yr) fire
cycle (Austin 1976).

In this study we saw little change in species composition

with fire, no obvious nutrient deficiencies in the post-fire
vegetation, and only minor effects on the soil. This does not

necessarily mean that a 3 year fire cycle can be applied to oak

scrub without significant impacts. This study could consider

only the impacts of a single fire event and not a changed fire
regime. There is no convincing evidence that oak scrub had a

natural fire regime of 3 years. The best estimates are

considerably longer (ca. 10-25 yr) and more variable. Repeated

burning on a 3 year cycle could eventually shift the species

composition toward those components of the community best adapted

to frequent fire (e.g., saw palmetto, wiregrass) and away from

the scrub oaks (Davlson and Bratton 1986). Long-term impacts on

nutrient cycling processes cannot be ruled out on the basis of
current data.

CONCLUSIONS AND MANAGEMENT IMPLICATIONS

i. Oak scrub is a shrub community dominated by several

species of oaks, ericads, and saw palmetto. It is related to

inland scrub communities but lacks many of the scrub endemic

plants and has few natural openings. Depth to water table
influences scrub composition; saw palmetto dominates on wetter
sites while oaks dominate on drier sites.

2. Dominant species of the oak scrub community respond to
fire by sprouting. Species composition and richness are little

changed after fire. Saw palmetto reestablishes cover more

rapidly then the oaks and therefore may temporarily assume
greater dominance.

3. Major structural changes occur in scrub after fire.

Shrub height is reduced and requires 4 to 6 years to exceed i m.

4. Reduction in shrub height affects the suitability of

scrub for the endemic Florida scrub Jay which prefers oak scrub i

to 3 m in height. A 3 year fire rotation will maintain oak scrub

below the optimal height for scrub Jays.

5. Live biomass increases with time since fire. Litter

biomass increases for about 8 years post-fire. Standing dead

biomass and palmetto rhizomes are also important biomass
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components. Biomass in oak scrub is similar to that in chaparral
and other shrublands.

6. Nutrients concentrations in live biomass do not change
with time since fire. Nutrient concentrations in biomass and
nutrient standing crop are similar to those in other shrublands.
Concentrations of potassium, calcium, and phosphorous are higher
in the most recently burned stand probably as a result of ash
deposition.

7. Soil chemical properties are strongly influenced by soil
drainage; the wetter soils have higher organic matter, greater
cation exchange capacity, TKN, and higher concentrations of many
nutrients. Effects of fire on scrub soil present 2 years post-
fire are relatively minor but include increased pH and decreased
organic matter, TKN, and available zinc.

8. Biomass pools of major nutrients (P, K, Ca, TKN, Na)
exceed those in the soil in most cases. Concentration of
nutrients in biomass may increase the vulnerability of this
vegetation to nutrient losses. However, the importance of
standing dead biomass, saw palmetto rhizomes, and probably
belowground biomass as nutrient pools may help buffer the system
against nutrient losses.

9. Deposition rates of nitrogen, phosphorous, calcium, and
potassium in precipitation are low compared to biomass pools
while deposition of magnesium and sodium is greater relative to
amounts in biomass. Nitrogen fixation and mechanisms that retain
and recycle nutrients may be important to the persistence of
scrub on low nutrient soils.

i0. Imposition of a continued regime of burning on a 3 year
cycle may have impacts not indicated by the recovery of scrub
from a single fire event. Scrub vegetation is adapted to fire
and recovers after burning; however, there is no evidence that it
had a natural 3 year fire cycle. The best estimates are for a
considerably longer fire cycle (ca. 10-25 yrs) and one that was
more variable in time of fire return and less uniform (more
patchy) in space than the one currently being imposed. The
potential exists that repeated burning on a 3 year cycle could
eventually shift the species composition of oak scrub toward the
most fire tolerant species present (saw palmetto, wiregrass) and
away from the oaks. This fire regime could have a long-term
impacts on nutrient pools and dynamics not predictable based on
current data. Of more immediate and definite concern is the
impact of a 3 year fire cycle to structural features,
particularly shrub height, in scrub. Burning on a 3 year cycle
will keep shrub height less than 1 m in scrub and thus less than
the preferred height for the Florida scrub Jay. Since KSC
supports the largest remaining population of this species effects
of the burning program on it must be of concern.
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ll. On the landscape pattern of vegetation at KSC it would
be possible to devise fire management plans which combine longer
fire rotations in oak scrub and shorter fire rotations in the
more flre-prone saw palmetto scrub as suggested by Brelninger et
al. (1986).

123



LITERATURE CITED

Abrahamson, W.G. 1984a. Post-fire recovery of Florida Lake Wales
Ridge vegetation. Amer. J. Bot. 71:9-21.

Abrahamson, W.G. 1984b. Species responses to fire on the Florida
Lake Wales Ridge. Amer. J. Bot. 71:35-43.

Abrahamson, W.G., A.F. Johnson, J.N. Layne, and P.A. Peroni.
1984. Vegetation of Archbold Biological Station, Florida: An
example of the Southern Lake Wales Ridge. Florida Scientist
47:209-250.

Adrian, F.W., R.C. Lee, Jr., and J.E. Sasser. 1983. Upland
management plan for Merritt Island National Wildlife Refuge.
USFWS/MINWR. Titusville, Florida.

Austin. D.F. 1976.
49(4):2-5.

Florida scrub. Florida Naturalist

Baker, D.E. and M.C. Amacher. 1982. Nickel, copper, zinc, and
cadmium. In: A.L. Page, R.H. Miller, and D.R. Keeney
(eds.). Methods of soil analysis, part 2. Chemical and
microbial properties. Agronomy 9:323-346. American Society
of Agronomy, Inc., Madison, Wisconsin.

Baldwin, E., C.L. Bush, R.B. Hinton, H.F. Huckle, P. Nichols,
F.C. Watts, and J.A. Wolfe. 1980. Soil survey of Volusia
County, Florida. USDA Soil Conservation Service. Washington,
D.C. 207pp. and maps.

Boerner, R.E.J. 1981. Forest structure dynamics following
wildfire and prescribed burning in the New Jersey Pine
Barrens. Amer. Midl. Nat. 105:321-333.

Boerner, R.E.J. 1982. Fire and nutrient cycling in temperate
ecosystems. Bioscience 32:187-192.

Boerner, R.E.J. and R.T.T. Forman. 1982. Hydrologic and mineral
budgets of New Jersey Pine Barrens upland forests following
two intensities of fire. Can. J. For. Res. 12:503-510.

Barnhisel, R. and P.M. Bertsh. 1982. Aluminum. In: A.L. Page,
R.H. Miller, and D.R. Keeney (eds.). Methods of soil anlysis,
part 2. Chemical and microbial properties. Agronomy
9:275-300. American Society of Agronomy, Inc., Madison,
Wisconsin.

Brady, N.C.
edition.
639pp.

1974. The nature and properties of soils. Eighth
Macmillan Publishing Company, Inc., New York.

124



Breininger, D.R. 1981. Habitat preferences of the Florida scrub
Jay (Aphelocoma coerulescens coerulescens) on Merritt Island

National Wildlife Refuge, Florida. M.S. Thesis. Florida

Institute of Technology, Melbourne. 159pp.

Breininger, D.R., P.A. Schmalzer, D.A. Rydene, and C.R. Hinkle.
1986. Burrow and habitat study of the gopher tortoise in

scrub and flatwoods habitat types. Final report to Florida

Game and Fresh Water Fish Commission. Project no. GFC 84-016.

Brooks, H.K. 1981a. Geologic map of Florida. Florida

Cooperative Extension Service, Institute of Food and

Agricultural Sciences, University of Florida. Gainesville.

Brooks, H.K. 1981b. Physiographic divisions (State of

Florida). Florida Cooperative Extension Service, Institute of

Food and Agricultural Sciences, University of Florida.
Gainesville.

Brown, D.W., W.E. Kenner, J.W. Crooks, and J.B. Foster.

Water resources of Brevard County, Florida. Report of

Investigations no. 28. Florida Geological Survey.
Tallahassee. 104pp.

1962.

Buckholz, K. 1983. Initial responses of pine and oak to

wildfire in the New Jersey Pine Barrens Plains. Bull. Torrey
Bot. Club 110:91-96.

Burton, G.W. and R.H. Hughes. 1961. Effects of burning and 2,4,
5-T on gallberry and saw palmetto. J. Forestry 59:497-500.

Chaki, S. 1974. Study of beach ridges Cape Canaveral,
Florida. Coastal Reserach Notes 4(21:5-7.

Chapman, H.D. 1965. Cation exchange capacity. In: C.A. Black
(ed.). Methods of sol analysis, part 2. Chemical and

microbial properties. Agronomy 9:891-901. American Society

of Agronomy, Inc., MAdison, Wisconsin.

Christensen, N.L. 1979. Shrublands of the southeastern United

States. Pp. 441-449. In: R.L. Specht (ed.). Heathlands and

related shrublands of the world, A. Descriptive studies.
Elsevier Scientific Pub. Co. Amsterdam.

Christensen, N.L. 1985. Shrubland fire regimes and their
evolutionary consequences. Pp. 85-100. In: S.T.A. Pickett

and P.S. White (ads.). The ecology of natural disturbance and

patch dynamics. Academic Press, Inc., Orlando, Florida.

472pp.

125



Christensen, N.L., R. Burchell, A. Liggett, and E.R. Simms.
1981. The structure and development of pocosin vegetation.
Pp. 43-61. In: C.J. Richardson (ed.). Pocosin wetlands:
integrated analysis of coastal freshwater bogs in North
Carolina. Hutchinson Ross Pub. Co., Stroadsburg,
Pennsylvania.

Cox, J.A. 1981. Distribution, habitat, and social organization
of the Florida scrub Jay, with a discussion of the evolution
of cooperative breeding in new world Jays. Ph.D.
Dissertation. University of Florida, Gainesville.

an

Davlson, K.L. and S.P. Bratton. 1986. The vegetation history of
Canaveral National Seashore, Florida. CPSU Technical Report

22. U.S. National Park Service Cooperative Park Studies Unit,

Institute of Ecology, University of Georgia, Athens. 75PP.

Duever, L.C. 1983a. Natural communities of Florida's inland
sand ridges. The Palmetto 3(3):3-5.

Duever, L.C. 1983b. Natural communities of Florida's coastal
dunes. The Palmetto 3(4):4-5.

Eastern Space and Missile Center. 1982. Weather meterologlcal
handbook ESMC pamphlet 105-1. Department of the Air Force,

Eastern Space and Missile Center, Patrick Air Force Base,
Florida.

Fullerton, S.C. 1985. STAT80 Users Guide, Release 2.9k.
Statware. Salt Lake City, Utah.

Gambrell, R.P. and W.H. Patrick, Jr. 1982. Manganese. In:

A.L. Page, R.H. Miller, and D.R. Keeney (eds.). Methods of

soll analysis, part 2. Chemical and microbial properties.

Agronomy 9:313-322. American Society of Agronomy, Inc.,

Madison, Wisconsin.

Gauch, H.G., Jr. 1977. ORDIFLEX--A flexible computer program
for four ordination techniques: weighted averages, polar

ordination, principal components analysis, and reciprocal

averaging. Release B. Ecology and Systematics, Cornell

University, Ithaca, New York. 185pp.

Gill, A.M. and R.H. Groves. 1981. Fire regimes in heathlands
and their plant-ecological effects. Pp. 61-84. In: R.L.

Specht (ed.). Ecosystems of the world. Vol. 9B. Heathlands
and related shrublands, analytical studies. Elsevier

Scientific Pub. Co., Amsterdam.

Gilliam, F.S. 1982. Effects of fire on components of nutrient

dynamics in a lower coastal plain watershed ecosystem. Ph.D.
Dissertation. Duke University, Durham, North Carolina.

261pp.

126



Givens, K.T., J.N. Layne, W.G. Abrahamson and S.C. White-
Schuler. 1984. Structural changes and successional

relationships of five Florida Lake Wales Ridg@ plant
communities. Bull. Torrey Bot. Club ii1:8-18.

Gray, J.T. 1982. Community structure and productivity in
Ceanothus chaparral and coastal sage scrub of southern

California. Ecol. Monogr. 52:415-435.

Gray, J.T. 1983. Nutrient use by evergreen and deciduous shrubs

in southern California. I. Community nutrient cycling and

nutrlent-use efficiency. J. Ecology 71:21-41.

Hamilton, D.B., A.K. Andrews, G.T. Auble, R.A. Elllson, A.H.

Farmer, and J.E. Roelle. 1985. Environmental systems and

management activities on the Kennedy Space Center, Merrltt
Island, Florida: results of a modeling workshop. US Fish

Wildlife Serv., Western Energy Land Use Team, Fort Collins,
Colorado. WELUT-85/W05. 130pp.

Hanes, T.L. 1971. Succession after fire in the chaparral of
southern California. Ecol. Monogr. 41:27-52.

Harper, R.M. 1914. Geography and vegetation of northern
Florida. Pp. 163-437 in 6th Annual Report of the Florida

State Geol. Survey, Tallahassee. 451pp.

Harper, R.M. 1921. Geography of central Florida. Pp. 71-304 in

13th Annual Report of the Florida State Geol. Survey,
Tallahassee.

Harper, R.M. 1927. Natural resources of southern Florida.

27-192 in 18th Annual Report of the Florida State Geol.

Survey. Tallahassee.

Pp.

Healy, H.G. 1975. Terraces and shorelines of Florida. USDI
Geological Survey and Florida Department of Natural Resources

Bureau of Geology. Tallahassee, Florida.

Hough, W.A. 1981. Impact of prescribed fire on understory and
forest floor nutrients. USDA Forest Service Research Note

SE-303. Southeastern Forest Experiment Station, Asheville,
North Carolina. 4pp.

Hough, W.A. 1982. Phytomass and nutrients in the understory and
forest floor of slash/longleaf pine stands. Forest Science
28:359-372.

Hoyt, J.H. and V.J. Henry, Jr. 1970. Origin of capes and shoals
along the southeastern coast of the United States. Geol.

Soc. Amer. Bull. 82:59-66.

Huckle, H.F., H.D. Dollar, and R.F. Pendleton. 1974. Soil

survey of Brevard County, Florida. USDA Soil Conservation

Service, Washington, DC. 123pp. and maps.

127



James, S. 1984. Lignotubers and burls-their structure,

function, and ecological significance in Mediterranean
ecosystems. Bot. Rev. 50:225-266.

Johnson, A.F. 1982. Some demographic characteristics of the
Florida rosemay Ceratiola ericoides Michx. Amer. Midl. Nat.

108:170-174.

Johnson, A.F. and W.G. Abrahamson. 1982. Quercus Inoplna: a
species to be recognized from south-central Florida. Bull.

Torrey Bot. Club 109:392-395.

Johnson, A.F., W.G. Abrahamson, and K.D. McCrea. 1986.

Comparison of biomass recovery after fire of a seeder

(Ceratlola erlcoldes) and a sprouter (Quercus inoplna) species
from couth-central Florida. Amer. Midl. Nat. 116:423-428.

Jorgenson, J.R. and C.G. Wells. 1971. Apparent nitrogen
fixation in soil influenced by prescribed burning. Soil Sci.

Soco Am. Proc. 35:806-810.

Kallsz, P.J. and E.L. Stone. 1984. The longleaf pine islands of
the Ocala National Forest, Florida: a soil study. Ecology
65:1743-1754.

F

Keeley, J.E. and P.H. Zedler. 1978. Reproduction of chaparral
shrubs after fire: a comparison of sprouting and seeding

strategies. Amer. Midl. Nat. 9:142-161.

Keeney, S.Ro and S.W. Nelson. 1982. Nitrogen-inorganic forms.
In: A.L. Page, L.H. Miller, and D.R. Keeney (eds.). Methods

of soll analysis, part 2. Chemical and microbial properties.

Agronomy 9:643-698. American Society of Agronomy, Inc.
Madison, Wisconsin.

Knight, H. 1966. Loss of nitrogen from the forest floor by

burning. Forestry Chronicle 42:149-152.

Knudsen, D., G.A. Peterson, and P.F. Pratt. 1982. Lithium,
sodium, and potassium. In: A.L. Page, R.H. Miller, and D.R.

Keeney (eds.). Methods of soil analysis, part 2. Chemical
and microbial properties. Agronomy 9:225-246. American

Society of Agronomy, Inc., Madison, Wisconsin.

Kruger, F.J. 1983. Plant community diversity and dynamics in
relations to fire. Pp. 446-472. In: F.J. Kruger, D.T.

Mitchell, and J.U.M. Jarvis (eds.). Medlterranean-type

ecosystems: the role of nutrients. Springer-Verlag. New
York.

Kummerow, J., D. Krause, and W. Jow. 1977.

chaparral shrubs. Oecologia 29:163-177.

Root systems of

Kurz, H. 1942. Florida dunes and scrub vegetation and geology.
Florida Geol. Surv. Bull. 23:15-154.

128



Laessle, A.M. 1942. The plant communities of the Welaka area.
Univ. of Fla. Publ., Biol. Sci. Series 4:1-143.

Laessle, A.M. 1958a. The origin and successional relationship
of sandhill vegetation and sand pine scrub. Ecol. Monogr.
28:361-387.

Laessle, A.M. 1958b. A report on successional studies of
selected plant communities on the University of Florida
Conservation Reserve, Welaka, Florida. Quart. J. Fla. Acad.
Sci. 21:I01-112.

Lanyon, L.E. and W.R. Heald. 1982. Magnesium, calcium,
strontium, and barium. In: A.L. Page, R.H. Miller, and D.R.
Keeney (eds.). Methods of soll analysis, part 2. Chemical
and microbial properties. Agronomy 9:247-262. American
Society of Agronomy, Inc., Madison, Wisconsin.

Lee. R.C., Jr., W.P. Leenhouts, and J.E. Sasser. 1981. Fire
management plan Merrltt Island National Wildlife Refuge.
USFWS/MINWR. Titusville, Florida.

Lewis, W.M., Jr. 1974. Effects of fire on nutrient movement in
a South Carolina pine forest. Ecology 55:1120-1127.

Loveless, A.R. 1961. A nutritional interpretation of
sclerophylly based on differences in the chemical composition
of sclerophyllous and mesophytic leaves. Annals of Botany
25:168-184.

Loveless, A.R. 1962. Further evidence to support a nutritional
interpretation of sclerophylly. Annals of Botany 26:551-561.

Madsen, B.C. 1980. A continuation of baseline studies for
environmental monitoring Space Transportation System at John
F. Kennedy Space Center. Vol. II. Chemical studies: rainfall
and soll analysis. NASA Contract No. NASI0-8986. NASA
Contract Report 163122. John F. Kennedy Space Center,
Florida.

Madsen, B.C., T.W. Dreschel, and C.R. Hinkle. 1987. An
evaluation of rain chemistry for the John F. Kennedy Space
Center, Florida and the University of Central Florida,
Orlando, Florida. Draft NASA Technical Memorandum.

Malanson, G.P. 1985. Simulation of competition between

alternative shrub llfe history strategies through recurrent
fires. Ecological Modelling 27:271-283.

Marts, R.H. 1978. Seasonal changes and multivariate studies of
the mineral element status of several members of the

Ericaceae. J. Ecology 66:533-545.

129



McKee, W.H., Jr. 1982. Changes in soil fertility following
prescribed burning on Coastal Plain pine sites. USDAForest
Service Research Paper SE-234. Southeastern Forest Exp. Stn.
Ashville, North Carolina. 23pp.

McLean, E.O. 1982. Soil pH and lime requirement. In: A.L.
Page, R.H. Miller, and D.R. Keeney (eds.). Methods of soil
analysis, part 2. Chemical and microbiological properties.
Agronomy 9:199-224. American Society of Agronomy, Inc.,
Madison, Wisconsin.

McNab, W.H., M.B. Edwards, Jr., and W.A. Hough. 1978.
Estimating fuel weights in slash pine-palmetto stands.
Science 24:345-358.

Forest

Monk, C.D. 1966. An ecological significance of evergreenness.
Ecology 47:504-505.

Mueller-Dombois, D. and H. Ellenberg. 1974. Aims and methods of
vegetation ecology. John Wiley & Sons, New York. 547pp.

Mulvania, M. 1931. Ecological survey of the Florida scrub.
Ecology 12:528-540.

Myers, R.L. 1985. Fire and the dynamic relationships between
Florida sandhill and sandpine scrub vegetation. Bull. Torrey

Bot. Club I12:241-252.

NASA. 1979. Final environmental impact statement for the

Kennedy Space Center. National Aeronautics and Space
Administration. John F. Kennedy Space Center, Florida.

Nelson, D.W. and L.E. Sommers. 1982. Total carbon, organic

carbon, and organic matter. In: A.L. Page, R.H. Miller, and

D.R. Keeney (eds.). Methods of soil analysis, part 2.
Chemical and microbial properties. Agronomy 9:539-579.

American Society of Agronomy, Inc., Madison, Wisconsin.

Norusis, M.J. 1986a. SPSS/PC+ for the IBM PC/XT/AT.

Inc., Chicago, Illinois.

SPSS,

Norusis, M.J. 1986b. SPSS/PC+ advance statistics for the IBM

PC/XT/AT. SPSS, Inc., Chicago, lllinois.

Olsen, S.R. and L.E. Sommers. 1982. Phosphorous. In: A.L.

Page, R.H. Miller, and D.R. Keeney (eds.). Methods of soil

analysis, part 2. Chemical and microbial properties.

Agronomy 9:403-430. American Society of Agronomy, Inc.,

Madison, Wisconsin.

Olson, R.V. and R. Ellis, Jr. 1982. Iron. In: A.L. Page,

R.H. Miller, and D.R. Keeney (eds.). Methods of soil

analysis, part 2. Chemical and microbial properties.

Agronomy 9:301-312. American Society of Agronomy, Inc.,

Madison, Wisconsin.

130



Osmond, J.K., J.P. May, and W.F. Tanner. 1970. Age of the Cape

Kennedy barrler-and-lagoon complex. J. Geophysical Research
75:469-479.

Perkin-Elmer Corporation. 1982.

absorption spectrophotometry.
Norwalk, Connecticut.

Analytical methods for atomic

Perkin-Elmer Corporation.

Permar, T.A. and R.F. Fisher. 1983. Nitrogen fixation and
accretion by wax myrtle (Myrica cerifera) in slash pine (Pinus

elliottii) plantations. Forest Ecology and Management
5:39-46.

Peroni, P.A. and W.G. Abrahamson. 1986. Succession in Florida

sandrldge vegetation: a retrospective study. Florida
Scientist 49:176-191.

Poppleton, J.E., A.G. Shuey, and H.A. Sweet. 1977. Vegetation
of central Florida's east coast: a checklist of the vascular

plants. Florida Scientist 40:362-389.

Provancha, M.J., P.A. Schmalzer, and C.R. Hinkle. 1986.

Vegetation types. John F. Kennedy Space Center, Biomedical

Operations and Research Office (Maps in Master Planning
format, 1:9600 scale, digitization by ERDAS, Inc.).

Raison, R.J. 1979. Modification of the soil environment by
vegetation fires, with particular reference to nitrogen

transformations: a review. Plant and Soil 51:73-108.

Rhoades, J.D. 1982. Soluble salts. In: A.L. Page, R.H.

Miller, and D.R. Keeney (eds.). Methods of soil analysis,

part 2. Chemical and microbial properties. Agronomy
9:167-179. American Society of Agronomy, Inc., Madison,
Wisconsin.

Richardson, D.R. 1977. Vegetation of the Atlantic Coastal ridge
of Palm Beach County, Florida. Florida Scientist 40:281-330.

Richter, D.D. 1980. Prescribed fire: effects on water quality
and nutrient cycling in forested watersheds on the Santee

Experimental Forest in South Carolina. Ph.D. Dissertation.

Duke University, Durham, North Carolina. 194pp.

Richter, D.D., C.W. Ralston, and W.R. Harms. 1982. Prescribed

fire: effects of water quality and forest nutrient cycling.
Science 215:661-663.

Rundel, P.W. 1981. Fire as an ecological factor. Pp. 501-538.

In: O.L. Lange, P.S. Nobel, C.B. Osmond, and H. Ziegler
(eds.). Physiological plant ecology. I. Responses to the

physical environment. Springer-Verlag. New York.

131



Schmalzer, P.A. 1982. Vegetation of the Obed Wild and Scenic

River, Tennessee and a comparison of reciprocal averaging

ordination and binary discrlmlnant analysis. Ph.D.

Dissertation. The University of Tennessee, Knoxville. 236pp.

Schmalzer, P.A. and C.R. Hinkle. 1985. A brief overview of

plant communities and the status of selected plant species at

John F. Kennedy Space Center, Florida. Report submitted to

Biomedical Office, KSC.

Schuman, G.E., M.A. Stanley, and D. Knudsen. 1973. Automated

total nitrogen analysis of soll and plant samples. Soil Scl.
Soc. Amer. Proc. 37:480-481.

Snyder, J.R. 1984. The impact of wet season and dry season
prescribed fire on Miami Rock Ridge Pineland, south Florida.

Ph.D. Dissertation. The University of Florida, Galnesville.
153pp.

Specht, R.L., P. Rayson, and M.E. Jackman. 1958. Dark Island

heath (Ninety-mile Plain, South Australia). VI. Pyric

succession: changes in composition, coverage, dry weight, and
mineral nutrient status. Australian Journal of Botany
6:59-88.

Stout, I.J. 1980. A continuation of base-line studies for

environmentally monitoring Space Transportation Systems (STS)

at John F. Kennedy Space Center. Vol.I. Terrestrial

community ecology. NASA Contract No. NAS 10-8986. NASA

Contract Report 163122.

Sweet, H.C. 1976. A study of a diverse coastal ecosystem of the

Atlantic Coast of Florida: Botanical studies on Merritt

Island. Final report to NASA/KSC, Grant No. NGR 10-019-004.

258pp.

Systat. 1984. Systat: The system for statistics.
Inc., Evanston, Illinois.

Systat,

Technlcon Industrial Systems. 1973. Nitrate and nitrite in
water and wastewater. Industrial method no. 100-70W.

Technlcon Industrial Systems. Tarrytown, New York.

Technicon Industrial Systems. 1983a. Ammonia in water and
wastewater. In: Multi-test cartridge method no. 696-82W:

ID-4D. Technicon Industrial Systems, Tarrytown, New York.

Technlcon Industrial Systems. 1983b. Nitrogen, total KJeldahl,

in water and wastewater. In: Multi-test cartridge no.

696-82W:IC-5C. Technlcon Industrial Systems, Tarrytown, New
York.

132



Technicon Industrial Systems. 1983c. Ortho-phosphorous. In:
Multl-test cartridge no. 696-82W: 1B-4B. Technicon Industrial
Systems, Tarrytown, New York.

Technicon Industrial Systems. 1983d. Phosphorous, total, in
water and wastewater. In: Multi-test cartridge method
no. 696-82W:IA-9A. Technicon Industrial Systems, Tarrytown,
New York.

Veno, P.A. 1976. Successional relationships of five Florida
plant communities. Ecology 57:498-508.

Vlckers, D.H., R.S. White, and I.J. Stout. 1975. Elemental
analysis of selected Merrltt Island plants. Florida Scientist
38:163-171.

Walker, J. and R.K. Peet. 1983. Composition and species
diversity of plne-wlregrass savannas of the Green Swamp, North
Carolina. Vegetatio 55:163-179.

Walter, H. 1979. Vegetation of the earth and ecological systems
of the geo-blosphere. Springer-Verlag, New York. 274pp.

Watts, W.A. 1971. Post-glacial and interglacial vegetational
history of southern Georgia and central Florida. Ecology
52:676-690.

Watts, W.A. 1975. A late Quaternary record of vegetation from
Lake Annie, south-central Florida. Geology 3:344-346.

Watts, W.A. 1980. The Late Quaternary vegetation history of the
southeastern United States. Ann. Rev. Ecol. Syst. 11:387-409.

Webber, H.J. 1935. The Florida scrub, a fire-flghting
association. Amer. J. Bot. 22:344-361.

Wells, C.G., R.E. Campbell, L.F. DeBano, C.E. Lewis, R.L.
Fredrlkson, E.C. Franklin, R.C. Froelich, and P.H. Dunn.
1979. Effects of fire on soil. USDA Forest Service, General
Technical Report WO-7. 34pp.

White, W.A. 1958. Some geomorphic features of central
peninsular Florida. Geological Bulletin No. 41. Florida
Geological Survey. Tallahassee. 92pp.

White, W.A. 1970. The geomorphology of the Florida peninsula.
Geological Bulletin No. 51. Bureau of Geology, Florida
Department of Natural Resources. Tallahassee. 164pp.

Whittaker, R.H., L.E. Gilbert, and J.H. Connell. 1979a.
Analysis of two-phase pattern in a mesquite grassland, Texas.
J. Ecology 67:935-952.

133



Whittaker, R.H., W.A. Niering, and M.D. Crisp. 1979b.
Structure, patter and diversity of a mallee con_nunity in New

South Wales. Vegetatio 39:65-76.

Wilbur, R.B. and N.L. Christensen. Effects of fire on nutrient
availability in a North Carolina Coastal Plain pocosin.
Amer. Midl. Nat. Ii0:54-61.

Wolfe, J.A. 1962. Analytical procedures for plant and soil

samples used in vegetation studies related to movement of
radioactive wastes. Botany Department, The University of

Tennessee. AEC Contract No. AT-(40-)-2077. Knoxville.

58pp.

Woodwell, G.M., R.H. Whittaker, and R.A. Houghton. 1975.
Nutrient concentrations in plants in the Brookhaven oak-plne

forest. Ecology 56:318-332.

134



@

Na_l Aem_._csa_
SO_eA_,nslralc_

1. Report No.

Till 100305"

Report Documentation Page

2. Government Accession No.

4. Title and Subtitle

_ffects of fire on ocmposition, biomass, and nutrients

in oak scrub vegetation on John F. Kennedy Space Center,
Florida

7. Authorls)

_/_nalzer, P.A. and C.R. Hinkle (I)

.3ditors Knott, W.M. III and A.M. Koller, Jr. (2)

3. Recipient's Catalog No.

5. Report Date

July 1987

6. Performing Organization Code

BIO-I

8. Performing Organization Report No.

10. Work Unit No.

11. Contract or Grant No.

NAS10-10285

13. Type of Report and Period Covered

9. Performing Organization Name and Address

(1) The Bionetics Corp. (2) NASA/BiQmedical Office

John F. Kennedy John F. Kennedy

Space Center Space Center

KSC, FL 32899 KSC, FL 32899
12. Sponsoring Agency Name and Address

NASA/John F. Kennedy Space Center
Florida 32899

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

Oak scrub is a shrub vegetation type dominated by Quercus myrtifolia, Q.

Ichapmanii, Q. vir_iniana V-dr. 9eminata, Serenoa repens, and ericaceous shrubs

occurring on _ll-drained sites on John F. Kennedy Space Center, Merritt Island,
Florida.

Four stands of scrub vegetation, 2, 4, 8, and 25 years since fire, were sampled

in 1983 with pezmanent 15 m line transec_ and percent cover by species was
de_ed. Biomass was harvested on 1 m = plots associated with the line transects.

Plant tissue samples were analyzed for total Kjeldahl nitrogen (TKN), total

_osphorus (P), calcium (Ca), magnesium (Mg), sodium _a), potassium (K), and

aluminum (AI). Soil samples were taken from the 0 to 15 cm and 15 to 30 cm layers at

each transect and analyzed for pH, conductivity, organic matter, catic_ exchange

capacity (CBC), exchangeable Ca, Mc3,K , AI, nitrate-nitrogen 0_O3-N ), ammonia-
initrogen (NH3-N) , available copper (Cu), iron (Fe), manganese (Mm), zinc (Zn), and P.

Transects were _ in 1985 for vegetation parameters.

Ordination analysis indicated that species were distributed along a gradient

related to _ter table depth. Between the two _le periods some shifts in

dom_ in transects of the YOqDg_/ _tands occurred with saw nalm__t*-Jn "i_r_.x',=_._n_,
17. Key Words (Suggested by Author(s)) 18. Distribution Statement "

Oak Scrub Vegetation, Fire Effects, Unlimited

Florida, Species Composition, Biomass, National Technical Infozmation Service

Nutrient Concentrations, Nutrient Standing Subject Category 51

crops

19. Security Classff. (of this report)

Unclassified

NASA FORM 1628 OCT86

20. Security Classif. (of this page)

Unclassified

21. No. of pages

146

22. Price



Effects of fire on crmposition, bicmass, and nutrients in oak scrub vegetatic_

an John F. Kennedy Space Center, Florida

16. Abstract (continued).

importance in some and oaks in others primarily due to height growth. Species

richness changed little with t/me since fire. Mean total cover in the greater

than 0.5 m stratum, mean height, and mean max/nun height increased with t/me
since fire. M_an total cover in the less than 0.5 m stratum decreased after

year 2. Live bicmass increased with t/me since fire. Litter bicmass increased

for at least 8 years after fire. Standing dead bicmass formed a major ocm_cnent

of total bicnass but did not change significantly in total amount of t/me. Saw

palmetto rhizcmes were a significant and persistent component of scrub bicmass.

Tissue concentrations in live bicmass of TKN, total P, Ca, Mg, Na, K, and

A1 showed no trends with t/me since fire. Tissue concentrations were similar to

those reported for other ericaoecus shrubs and chaparral species. Litter

concentrations of Ca, K, and total P were elevated in the 2 year old stand

probably as a results of ash deposition.

Nutrient pools in bicmass were calculated from bicmass data and tissue

nutrient concentrations. Litter, standing dead material, and saw palmetto rhizcmes

were major pools for many nutrients. Live stem bicmass became _portant in the

oldest stand. Standing crops were similar to those in other shrublands such as

chaparral.

Soil chemical properties were closely related to water table depth. Wetter

soils had higher organic matter content, greater cation exchange capacity, and

higher concentrations of many nutrients. Effects of fire on scrub soils include

increased pH and decreased organic matter, TEN, and available Zn.

Soil nutrient pools were calculated frcm nutrient concentrations and bulk

density. Bicmass pools of P, Ca, and K were greater than those of the soil in all

stands. Bicmass pools of TEN, Na, and Mg exceeded those in tb_ soil except in

wetter sites or where saw palmetto rhizcmes were few. Aluminum pools were

cc_sistently greater in the soil than in bicmass.

Deposition rates of nitrogen, Ca, P, and K in precipitation were low relative

to bicmass pools while the amctmts of sodium and magnesium in precipitation were

greater relative to bicmass. Biological nitrogen fixation and mechan/sms which

retain and recycle nutrients in the system may be important to the persistence of
oak scrub.

Long-term fire effects of a changed fire regime (e.g., the 3 yr cycle now

being applied) could be greater than what is seen after recovery from a single

fire event and could include shifts in dcatinance to the species best adapted to

frequent fire and changes in nutrient cycling. The effects of frequent fire in

oak scrub of most concern are the structural changes, particularly reduction in

height. Burning on a 3 year cycle ma/ntains shrub height in oak scrub less than

1 m but the emdemic Florida scrub jay (dependent on oak scrub and related

ccmmmmities) prefers oak scrub greater than 1 m as habitat.

o




